Chapter 7 Quantum Theory and the Electronic Structure of Atoms

Student:

1. What is the wavelength of radiation that has a frequency of $6.912 \times 10^{14} \mathrm{~s}^{-1}$?
A. $1.447 \times 10^{-15} \mathrm{~nm}$
B. $4.337 \times 10^{2} \mathrm{~nm}$
C. $\quad 2.304 \times 10^{6} \mathrm{~nm}$
D. $2.074 \times 10^{23} \mathrm{~nm}$
E. $\quad 4.337 \times 10^{-7} \mathrm{~nm}$
2. What is the wavelength of radiation that has a frequency of $2.10 \times 10^{14} \mathrm{~s}^{-1}$?
A. $\quad 6.30 \times 10^{22} \mathrm{~m}$
B. $\quad 7.00 \times 10^{2} \mathrm{~nm}$
C. $\quad 7.00 \times 10^{5} \mathrm{~m}$
D. $1.43 \times 10^{-6} \mathrm{~m}$
E. $\quad 3.00 \times 10^{8} \mathrm{~m}$
3. Calculate the frequency of visible light having a wavelength of 486 nm .
A. $2.06 \times 10^{14} / \mathrm{s}$
B. $2.06 \times 10^{6} / \mathrm{s}$
C. $\quad 6.17 \times 10^{14} / \mathrm{s}$
D. $1.20 \times 10^{-15} / \mathrm{s}$
E. $4.86 \times 10^{-7} / \mathrm{s}$
4. Calculate the frequency of visible light having a wavelength of 686 nm .

- AC $4.37 \times 10^{14} / \mathrm{s}$
B. $\quad 4.37 \times 10^{5} / \mathrm{s}$
C. $\quad 6.17 \times 10^{14} / \mathrm{s}$
D. $2.29 \times 10^{-15} / \mathrm{s}$
E. $2.29 \times 10^{-6} / \mathrm{s}$

5. What is the energy in joules of one photon of microwave radiation with a wavelength 0.122 m ?
A. $\quad 2.70 \times 10^{-43} \mathrm{~J}$
B. $5.43 \times 10^{-33} \mathrm{~J}$
C. $1.63 \times 10^{-24} \mathrm{~J}$
D. $4.07 \times 10^{-10} \mathrm{~J}$
E. $2.46 \times 10^{9} \mathrm{~J}$
6. What is the energy in joules of a mole of photons associated with visible light of wavelength 486 nm ?
A. $\quad 6.46 \times 10^{-16} \mathrm{~J}$
B. $\quad 6.46 \times 10^{-25} \mathrm{~J}$
C. $2.46 \times 10^{-4} \mathrm{~J}$
D. $\quad 12.4 \mathrm{~kJ}$
E. 246 kJ
7. What is the energy in joules of a mole of photons associated with red light of wavelength $7.00 \times 10^{2} \mathrm{~nm}$?
A. 256 kJ
B. $1.71 \times 10^{5} \mathrm{~J}$
C. $\quad 4.72 \times 10^{-43} \mathrm{~J}$
D. $\quad 12.4 \mathrm{~kJ}$
E. $2.12 \times 10^{42} \mathrm{~J}$
8. What is the binding energy (in $\mathrm{J} / \mathrm{mol}$ or $\mathrm{kJ} / \mathrm{mol}$) of an electron in a metal whose threshold frequency for photoelectrons is $2.50 \times 10^{14} / \mathrm{s}$?
A. $\quad 99.7 \mathrm{~kJ} / \mathrm{mol}$
B. $1.66 \times 10^{-19} \mathrm{~J} / \mathrm{mol}$
C. $2.75 \times 10^{-43} \mathrm{~J} / \mathrm{mol}$
D. $7.22 \times 10^{17} \mathrm{~kJ} / \mathrm{mol}$
E. $1.20 \times 10^{-6} \mathrm{~J} / \mathrm{mol}$
9. Complete this sentence: Atoms emit visible and ultraviolet light
A. as electrons jump from lower energy levels to higher levels.
B. as the atoms condense from a gas to a liquid.
C. as electrons jump from higher energy levels to lower levels.
D. as they are heated and the solid melts to form a liquid.
E. as the electrons move about the atom within an orbit.
10. Calculate the energy, in joules, required to excite a hydrogen atom by causing an electronic transition from the $\mathrm{n}=1$ to the $\mathrm{n}=4$ principal energy level. Recall that the energy levels of the H atom are given by
$\mathrm{E}_{\mathrm{n}}=-2.18 \times 10^{-18} \mathrm{~J}\left(1 / \mathrm{n}^{2}\right)$
A. $2.07 \times 10^{-29} \mathrm{~J}$
B. $2.19 \times 10^{5} \mathrm{~J}$
C. $2.04 \times 10^{-18} \mathrm{~J}$
D. $3.27 \times 10^{-17} \mathrm{~J}$
E. $\quad 2.25 \times 10^{-18} \mathrm{~J}$
11. Calculate the wavelength, in nanometers, of the light emitted by a hydrogen atom when its electron falls from the $\mathrm{n}=7$ to the $\mathrm{n}=4$ principal energy level. Recall that the energy levels of the H atom are given by
$E_{n}=-2.18 \times 10^{-18} \mathrm{~J}\left(1 / \mathrm{n}^{2}\right)$
A. $\quad 4.45 \times 10^{-20} \mathrm{~nm}$
B. $2.16 \times 10^{-6} \mathrm{~nm}$
C. $9.18 \times 10^{-20} \mathrm{~nm}$
D. $1.38 \times 10^{14} \mathrm{~nm}$
E. $\quad 2.16 \times 10^{3} \mathrm{~nm}$
12. Calculate the frequency of the light emitted by a hydrogen atom during a transition of its electron from the $n=6$ to the $n=3$ principal energy level. Recall that for hydrogen
$E_{n}=-2.18 \times 10^{-18} \mathrm{~J}\left(1 / \mathrm{n}^{2}\right)$.
A. $1.64 \times 10^{15} / \mathrm{s}$
B. $9.13 \times 10^{13} / \mathrm{s}$
C. $3.65 \times 10^{14} / \mathrm{s}$
D. $1.82 \times 10^{-19} / \mathrm{s}$
E. $2.74 \times 10^{14} / \mathrm{s}$
13. Całculate the frequency of the light emitted by a hydrogen atom during a
transition of its electron from the $\mathrm{n}=4$ to the $\mathrm{n}=1$ principal energy level. Recall that for hydrogen
$E_{n}=-2.18 \times 10^{-18} \mathrm{~J}\left(1 / \mathrm{n}^{2}\right)$
A. $3.08 \times 10^{15} / \mathrm{s}$
B. $\quad 1.03 \times 10^{8} / \mathrm{s}$
C. $2.06 \times 10^{14} / \mathrm{s}$
D. $1.35 \times 10^{-51} / \mathrm{s}$
E. $8.22 \times 10^{14} / \mathrm{s}$
14. Calculate the wavelength of the light emitted by a hydrogen atom during a transition of its electron from the $\mathrm{n}=4$ to the $\mathrm{n}=1$ principal energy level. Recall that for hydrogen
$E_{n}=-2.18 \times 10^{-18} \mathrm{~J}\left(1 / \mathrm{n}^{2}\right)$
A. $\quad 97.2 \mathrm{~nm}$
B. 82.6 nm
C. 365 nm
D. 0.612 nm
E. $\quad 6.8 \times 10^{-18} \mathrm{~nm}$
15. The second line of the Balmer series occurs at a wavelength of 486.1 nm . What is the energy difference between the initial and final levels of the hydrogen atom in this emission process?
A. $2.44 \times 10^{18} \mathrm{~J}$
B. $4.09 \times 10^{-19} \mathrm{~J}$
C. $4.09 \times 10^{-22} \mathrm{~J}$
D. $4.09 \times 10^{-28} \mathrm{~J}$
E. $1.07 \times 10^{-48} \mathrm{~J}$
16. In an electron microscope, electrons are accelerated to great velocities. Calculate the wavelength of an electron traveling with velocity of 7.0×10^{3} kilometers per second. The mass of an electron is $9.1 \times 10^{-28} \mathrm{~g}$.
A. $1.0 \times 10^{-13} \mathrm{~m}$
B. $1.0 \times 10^{-7} \mathrm{~m}$
C. $\quad 1.0 \mathrm{~m}$
D. $1.0 \times 10^{-10} \mathrm{~m}$
17. Calculate the wavelength associated with $\mathrm{a}^{20} \mathrm{Ne}^{+}$ion moving at a velocity of 2.0 $\times 10^{5} \mathrm{~m} / \mathrm{s}$. The atomic mass of $\mathrm{Ne}-20$ is 19.992 amu .
A. $1.0 \times 10^{-13} \mathrm{~m}$
B. $1.0 \times 10^{-16} \mathrm{~m}$
C. $1.0 \times 10^{-18} \mathrm{~m}$
D. $\quad 9.7 \times 10^{12} \mathrm{~m}$
E. $\quad 2.0 \times 10^{-13} \mathrm{~cm}$
18. Calculate the wavelength of a neutron that has a velocity of $200 . \mathrm{cm} / \mathrm{s}$. (The mass of a neutron $=1.675 \times 10^{-27} \mathrm{~kg}$.)
A. $1.98 \times 10^{-9} \mathrm{~m}$
B. 216 nm
C. $1.8 \times 10^{50} \mathrm{~m}$
D. 198 nm
E. $\quad 5.05 \mathrm{~mm}$
19. A common way of initiating certain chemical reactions with light involves the generation of free halogen atoms in solution. If $\Delta \mathrm{H}$ for the reaction $\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow$ $2 \mathrm{Cl}(\mathrm{g})$ is $242.8 \mathrm{~kJ} / \mathrm{mol}$, what is the longest wavelength of light that will produce free chlorine atoms in solution?
A. $\quad 246.3 \mathrm{~nm}$
B. $\quad 465.2 \mathrm{~nm}$
C. $\quad 349.3 \mathrm{~nm}$
D. 698.6 nm
E. $\quad 492.6 \mathrm{~nm}$
20. The longest wavelength of light that causes electrons to be ejected from the surface of a copper plate is 243 nm . What is the maximum velocity of the electrons ejected when light of wavelength $200 . \mathrm{nm}$ shines on a copper plate?
A. $\quad 1.48 \times 10^{6} \mathrm{~m} / \mathrm{s}$
B. $6.22 \times 10^{5} \mathrm{~m} / \mathrm{s}$
C. $4.67 \times 10^{4} \mathrm{~m} / \mathrm{s}$
D. $1.97 \times 10^{4} \mathrm{~m} / \mathrm{s}$
E. $1.34 \times 10^{6} \mathrm{~m} / \mathrm{s}$
21. When photons with a wavelength of 310 . nm strike a magnesium plate, the maximum velocity of the ejected electrons is $3.45 \times 10^{5} \mathrm{~m} / \mathrm{s}$. Calculate the binding energy of electrons to the magnesium surface.
A. $\quad 386 \mathrm{~kJ} / \mathrm{mol}$
B. $419 \mathrm{~kJ} / \mathrm{mol}$
C. $\quad 32.7 \mathrm{~kJ} / \mathrm{mol}$
D. $321 \mathrm{~kJ} / \mathrm{mol}$
E. $\quad 353 \mathrm{~kJ} / \mathrm{mol}$
22. Electrons can be used to probe the arrangement of atoms on a solid surface if the wavelength of the electrons is comparable with the spacing between the atoms. Which of the following electron velocities would be appropriate for use in this application if the atoms are separated by 0.320 nm ?
A. $2.27 \times 10^{6} \mathrm{~m} / \mathrm{s}$

- B. $1.24 \times 10^{3} \mathrm{~m} / \mathrm{s}$
C. $\quad 3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $\quad 4.41 \times 10^{6} \mathrm{~m} / \mathrm{s}$
E. $8.06 \times 10^{3} \mathrm{~m} / \mathrm{s}$

23. A single pulse of a laser yields an average of 5.00×10^{18} photons with $\lambda=633$ nm . If melting ice to water at $0^{\circ} \mathrm{C}$ requires $6.01 \mathrm{~kJ} / \mathrm{mol}$, what is the fewest number of laser pulses need to melt 10.0 g of ice?
A. 3830
B. 3340
C. 38300
D. 2120
E. 212
24. Which one of the following sets of quantum numbers is not possible?

	n	l	$\mathrm{~m}_{l}$	$\mathrm{~m}_{\mathrm{s}}$
Row 1	4	3	-2	$+1 / 2$
Row 2	3	0	1	$-1 / 2$
Row 3	3	0	0	$+1 / 2$
Row 4	2	1	1	$-1 / 2$
Row 5	2	0	0	$+1 / 2$

A. Row 1
B. Row 2
C. Row 3
D. Row 4
E. Row 5
25. Which one of the following sets of quantum numbers is not possible?

	n	l	$\mathrm{~m}_{l}$	$\mathrm{~m}_{\mathrm{s}}$
Row 1	4	3	-2	$+1 / 2$
Row 2	3	2	-3	$-1 / 2$
Row 3	3	0	0	$+1 / 2$
Row 4	4	1	1	$-1 / 2$
Row 5	2	0	0	$+1 / 2$

A. Row 1
B. Row 2
C. Row 3
D. Row 4
E. Row 5
26. What is the maximum number of electrons in a atom that can have the following set of quantum numbers?

$$
\mathrm{n}=4 \quad l=3 \quad \mathrm{~m}_{l}=-2 \quad \mathrm{~m}_{\mathrm{s}}=+1 / 2
$$

A. 0
B. 1
C. 2
D. 6
E. 10
27. A possible set of quantum numbers for the last electron added to complete an atom of gallium Ga in its ground state is

	n	l	$\mathrm{~m}_{l}$	$\mathrm{~m}_{\mathrm{s}}$
Row 1	4	0	0	$-1 / 2$
Row 2	3	1	0	$-1 / 2$
Row 3	4	1	0	$+1 / 2$
Row 4	3	1	1	$+1 / 2$
Row 5	4	2	1	$+1 / 2$

A. Row 1.
B. Row 2.
C. Row 3.
D. Row 4.
E. Row 5.
28. A possible set of quantum numbers for the last electron added to complete an atom of germanium in its ground state is

	n	l	$\mathrm{~m}_{l}$	$\mathrm{~m}_{\mathrm{s}}$
Row 1	4	0	0	$+1 / 2$
Row 2	3	0	+1	$-1 / 2$
Row 3	4	1	-1	$+1 / 2$
Row 4	3	1	+1	$-1 / 2$
Row 5	4	2	+2	$-1 / 2$

A. Row 1.
B. Row 2 .
C. Row 3.
D. Row 4.
E. Row 5.
29. Electrons in an orbital with $l=3$ are in a
A. dorbital.
B. forbital.
C. g orbital.
D. p orbital.
E. s orbital.
30. The number of orbitals in a d subshell is
A. 1 .
B. 2 .
C. 3 .
D. 5 .
E. 7.
31. The maximum number of electrons that can occupy an energy level described by the principal quantum number, n, is
A. n.
B. $n+1$.
C. $2 n$.
D. $2 n^{2}$.
E. n^{2}.
32. How many orbitals are allowed in a subshell if the angular momentum quantum number for electrons in that subshell is 3 ?
A. 1
B. 3
C. 5
D. 7
E. 9
33. "No two electrons in an atom can have the same four quantum numbers" is a statement of
A. the Pauli exclusion principle.
B. Bohr's equation.
C. Hund's rule.
D. de Broglie's relation.
E. Dalton's atomic theory.
34. The orbital diagram for a ground-state nitrogen atom is

Row $2 \underline{\uparrow \downarrow} \quad \uparrow \downarrow \quad \uparrow \downarrow \uparrow$
Row $3 \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$

A. Row 1.
B. Row 2 .
C. Row 3.
D. Row 4.
35. The orbital diagram for a ground-state oxygen atom is

	1 s	2 s		2 p
Row 1	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	
	$\underline{\uparrow}$	\uparrow		

Row $2 \xrightarrow{\uparrow} \quad \uparrow \downarrow \quad \uparrow \downarrow \uparrow \downarrow$
Row $3 \xrightarrow{\uparrow \downarrow} \quad \underline{\downarrow} \quad \underline{\downarrow} \uparrow \downarrow$
Row $4 \xrightarrow[\downarrow]{ } \quad \uparrow \downarrow \quad \uparrow \downarrow \uparrow \uparrow$
Row $5 \quad \uparrow \downarrow \quad \uparrow \downarrow \quad \uparrow \downarrow \uparrow \downarrow \uparrow$
A. Row 1.
B. Row 2.
C. Row 3.
D. Row 4.
E. Row 5.
36. The orbital diagram for a ground state carbon atom is

Row $2 \uparrow \downarrow \uparrow \uparrow \uparrow$
Row $3 \xrightarrow{\uparrow} \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow$
Row $4 \xrightarrow{\uparrow}$ \qquad
A. Row 1.
B. Row 2 .
C. Row 3.
D. Row 4 .
37. Which ground-state atom has an electron configuration described by the following orbital diagram?

$$
[\mathrm{Ar}] \frac{\uparrow \downarrow}{4 \mathrm{~s}} \quad \uparrow \downarrow \quad \uparrow \downarrow \frac{\uparrow \downarrow}{3 \mathrm{~d}} \xrightarrow{\uparrow} \xrightarrow{\uparrow} \quad \frac{\uparrow \downarrow}{4 \mathrm{p}} \uparrow
$$

A. phosphorus
B. germanium
C. selenium
D. tellurium
E. none of these
38. Which ground-state atom has an electron configuration described by the following orbital diagram?

$$
[\mathrm{Ne}] \frac{\uparrow \downarrow}{3 \mathrm{~s}} \quad \uparrow \frac{\uparrow}{3 \mathrm{p}} \uparrow
$$

A. phosphorus
B. nitrogen
C. arsenic
D. vanadium
E. none of these
39. How many unpaired electrons does a ground-state atom of sulfur have?
A. 0
B. 1
C. 2
D. 3
E. 4
40. Which element has the following ground-state electron configuration?
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
A. Na
B. Mg
C. Al
D. Si
E. Ne
41. Which element has the following ground-state electron configuration?

A. Sn
B. Sb
C. Pb
D. Bi
E. Te^{\prime}
42. Which element has the following ground-state electron configuration?
$[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{2}$
A. Sn
B. Sb
C. Pb
D. Ge
E. Te
43. The electron configuration of a ground-state Co atom is
A. $\quad[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{7}$.
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 d^{9}$.
C. $\quad[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{~d}^{7}$.
D. $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$.
E. $\quad[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{~d}^{7}$.
44. The electron configuration of a ground-state vanadium atom is
A. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{~d}^{3}$.
B. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{3}$.
C. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{3}$.
D. $[A r] 3 d^{5}$.
45. The electron configuration of a ground-state copper atom is
A. $\quad[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{~d}^{4}$.
B. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6} 3 \mathrm{~d}^{3}$.
C. $\quad[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{9}$.
D. $[\mathrm{Ar}] 3 \mathrm{~d}^{9}$.
E. $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$.
46. The ground-state electron configuration for an atom of indium is
A. $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{p}^{6} 4 \mathrm{~d}^{5}$.
B. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{1}$.
C. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6} 3 \mathrm{~d}^{5}$.
D. $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 5 \mathrm{p}^{6} 4 \mathrm{~d}^{5}$.
E. $\quad[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{1}$.
47. The ground-state electron configuration of a calcium atom is
A. $[\mathrm{Ne}] 3 \mathrm{~s}^{2}$.
B. $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}$
C. $\quad[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{1}$.
D. $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$.
E. $[\mathrm{Ar}] 3 \mathrm{~d}^{2}$.
48. How many electrons are there in the 2nd principal energy level $(n=2)$ of a phosphorus atom?
A. 3
B. 5
C. 6
D. 8
E. 10
49. How many electrons are there in the 3rd principal energy level $(n=3)$ of a phosphorus atom?
A. 3
B. 5 .
C. 6
D. 8
E. 10
50. A ground-state atom of manganese has \qquad unpaired electrons and is \qquad .
A. 0 , diamagnetic
B. 2, diamagnetic
C. 3, paramagnetic
D. 5, paramagnetic
E. 7, paramagnetic
51. A ground-state atom of vanadium has \qquad unpaired electrons and is \qquad .
A. 0, diamagnetic
B. 2, diamagnetic
C. 3, paramagnetic
D. 5, paramagnetic
E. 4, diamagnetic
52. A ground-state atom of iron has \qquad unpaired electrons and is \qquad .
A. 0, diamagnetic
B. 6, diamagnetic
C. 3, paramagnetic
D. 5, paramagnetic
E. 4, paramagnetic
53. Transition metal elements have atoms or ions with partially filled
A. s subshells.
B. p subshells.
C. d subshells.
D. f subshells.
E. g subshells.
54. Lanthanide (or rare earth elements) have atoms or ions with partially filled
A. s subshells.
B. p subshells.
C. d subshells.
D. f subshells.
E. g subshells.
55. Which choice lists two elements with ground-state electron configurations that are well-known exceptions to the Aufbau principle?
A. Cu and C
B. Cr and Cu
C. Cs and Cl
D. Rb and Co
E. Fe and Co
56. A ground-state chromium atom has how many unpaired electrons?
A. 1
B. 2
C. 4
D. 5
E. 6
57. Which of these choices is the electron configuration of an excited state of an oxygen atom?
A. $1 s^{2} 2 s^{2} 2 p^{4}$
B. $1 s^{2} 2 s^{2} 2 p^{5}$
C. $1 s^{2} 2 s^{2} 2 p^{3} 3 s^{1}$
D. $1 s^{2} 2 s^{2} 2 p^{6}$
E. $1 s^{2} 2 s^{2} 2 p^{3}$
58. Which of these choices is the electron configuration of an excited state of an iron atom?
A. $[\operatorname{Ar}] 4 s^{2} 3 d^{7}$
B. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$
C. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{8}$
D. $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{7}$
E. $[\mathrm{Ar}] 4 s^{1} 3 \mathrm{~d}^{5}$
59. Which of these choices is the electron configuration of an excited state of a copper atom?
A. $[$ Ar $] 4 s^{2} 3 d^{9}$
B. $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$
C. $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{8}$
D. $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{8}$
E. $[\mathrm{Ar}] 4 \mathrm{~s}^{0} 3 \mathrm{~d}^{10}$
60. The ground-state electron configuration of Cr, Mo, and Ag are exceptions to the Aufbau principle. Which of the following is the electron configuration for Mo?
A. $[\mathrm{Kr}] 5 \mathrm{~s}^{1} 4 \mathrm{~d}^{5}$
B. $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{4}$
C. $\quad[\mathrm{Xe}] 6 \mathrm{~s}^{2} 5 \mathrm{~d}^{4}$
D. $[\operatorname{Ar}] 4 \mathrm{~s}^{2} 4 \mathrm{~d}^{4}$
E. $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{6}$
61. How many electrons in a ground-state tellurium atom are in orbitals labeled by l $=1$?
A. 4
B. 10
C. 12
D. 16
E. 22
62. How many electrons in a ground-state cadmium atom are in orbitals labeled by $m_{l}=-1$?
A. 2
B. 10
C. 12
D. 18
E. 36
63. Which of these ground-state atoms is diamagnetic?
A. Ca
B. As
C. Cu
D. Fe
E. none of these
64. Which of these atoms is paramagnetic both in its ground state and in all of its excited states?
-
B. N
C. O
D. Ti
E. Cr
65. Which of these atoms is diamagnetic both in its ground state and in all of its excited states?
A. Mg
B. Ne
C. Cu
D. Zn
E. none of these
66. The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 2624 and 97.2 nm . What is the quantum number of the initial excited energy level from which the electron falls?
A. 2
B. 3
C. 4
D. 6
E. 8
67. The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 1870 and 102.5 nm . What is the quantum number of the initial excited energy level from which the electron falls?
A. 2
B. 3
C. 4
D. 6
E. 8
68. When the electron in a hydrogen atom falls from the $n=3$ excited energy level to the ground state energy level, a photon with wavelength λ is emitted. An electron having this same wavelength would have a velocity of
A. $\quad 7.10 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
B. $2.93 \times 10^{6} \mathrm{~m} / \mathrm{s}$.

C $\quad 2.93 \times 10^{3} \mathrm{~m} / \mathrm{s}$.
D. $\quad 7.10 \mathrm{~m} / \mathrm{s}$.
E. $\quad 3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
69. When the electron in a hydrogen atom falls from its first excited energy level to the ground state energy level, a photon with wavelength λ is emitted. A proton having this same wavelength would have a velocity of
A. $\quad 3.87 \mathrm{~m} / \mathrm{s}$.
B. $\quad 5990 \mathrm{~m} / \mathrm{s}$.
C. $\quad 1.21 \times 10^{-7} \mathrm{~m} / \mathrm{s}$.
D. $\quad 3.26 \mathrm{~m} / \mathrm{s}$.
E. $\quad 5.99 \mathrm{~m} / \mathrm{s}$.
70. Breaking the oxygen-oxygen bond in hydrogen peroxide requires $210 \mathrm{~kJ} / \mathrm{mol}$. What is the longest wavelength of light that can cause this bond to be broken?
A. $\quad 5.7 \times 10^{-4} \mathrm{~m}$
B. $\quad 9.5 \times 10^{-31} \mathrm{~m}$
C. $2.8 \times 10^{-7} \mathrm{~m}$
D. $9.5 \times 10^{-28} \mathrm{~m}$
E. $\quad 5.7 \times 10^{-7} \mathrm{~m}$
71. A photovoltaic cell converts light into electrical energy. Suppose a certain photovoltaic cell is only 63.5% efficient, in other words, that 63.5% of the light energy is ultimately recovered. If the energy output of this cell is used to heat water, how many 520 nm photons must be absorbed by the photovoltaic cell in order to heat 10.0 g of water from $20.0^{\circ} \mathrm{C}$ to 30.0° ? [Given: The specificheat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.]
A. 4.12×10^{20}
B. 1.72×10^{21}
C. 2.62×10^{20}
D. 6.95×10^{20}
E. 1.10×10^{21}
72. Write the ground state electron configuration for the selenium atom.
73. Write the ground state electron configuration for the phosphorus atom.
74. Calculate the energy of a photon of light with a wavelength of 360 nm .
75. What is the difference in the electron configuration between carbon-14 and carbon-12?
76. With regard to electron behavior, what happens when light is absorbed or emitted by an atom?
77. What is the total number of electrons possible in the $2 p$ orbitals?
78. What is the total number of electrons possible in the $6 s$ orbital?
79. What is the ground-state electron configuration for chlorine?
80. If one electron is added to the outer shell of chlorine, to which element would - the configuration be similar?
81. What is the electron configuration of calcium?
82. If we take away two electrons from the outer shell of calcium, to which element would the structure be similar?
83. The colors of the visible spectrum are red, orange, yellow, green, blue, and violet.
Of these colors, \qquad has the most energy.
84. The colors of the visible spectrum are red, orange, yellow, green, blue, and violet.
Of these colors, \qquad has the least energy.
85. What is the outermost electron configuration of O ?
86. What is the outermost electron configuration of S?
87. What is the outermost electron configuration of Se ?
88. What is the outermost electron configuration of Te ?
89. What is the outermost electron configuration of Be ?
90. What is the outermost electron configuration of Mg ?
91. What is the outermost electron configuration of Ca ?
92. What is the outermost electron configuration of Sr ?
93. What is the wavelength, in meters, of an alpha particle with a kinetic energy of $8.0 \times 10^{-13} \mathrm{~J}$. [mass of an alpha particle $=4.00150 \mathrm{amu} ; 1 \mathrm{amu}=1.67 \times 10^{-27} \mathrm{~kg}$]
94. What is the wavelength of a ball bearing with a mass of 10.0 g , and a velocity of $10.0 \mathrm{~cm} / \mathrm{s}$?
95. The bonds of oxygen molecules are broken by sunlight. The minimum energy required to break the oxygen-oxygen bond is $495 \mathrm{~kJ} / \mathrm{mol}$. What is the wavelength of sunlight that can cause this bond breakage?
96. The Bohr model of the hydrogen atom found its greatest support in experimental work on the photoelectric effect.

True False
97. An electron in a $3 p$ orbital could have a value of 2 for its angular momentum quantum number (l).

True False
98. A neon atom in its ground state will be diamagnetic.

True False
99. Each shell (principal energy level) of quantum number n contains n subshells.

True False
100. For all atoms of the same element, the $2 s$ orbital is larger than the $1 s$ orbital.

True False
101. According to de Broglie's equation, the wavelength associated with the motion of a particle increases as the particle mass decreases.

True False
102. The frequency of the emitted light from a cesium atom is an intensive property.

True False

Chapter 7 Quantum Theory and the Electronic

Structure of Atoms Key

1.B
2.D
3.C
4.A
5.C
6.E
7.B
8.A
9.C
10.C
11.E
12.E
13.A
14.A
15.B
16.D
17.A
18.D
19.E
20.B
21.E
22.A
23.D
24.B
25.B
26.B
27.C
28.C
29.B
30.D
31.D
32.D
33.A
34.A
35.D
36.D
37.C
38.A
39.C
40.B
41.B
42.A
43.A
44.C
45.E
46.E
47.D
48.D
49.B
50.D
51.C
52.E
53.C
54.D
55.B
57.C
58.D
59.A
60.A
61.E
62.B
63.A
64.B
65.E
66.D
67.C
68.A
69.D
70.E
71.B
72. [Ar] $4 s^{2} 3 d^{10} 4 p^{4}$
73.[Ne] 3s ${ }^{2} 3 \mathrm{p}^{3}$
$74.5 .5 \times 10^{-19} \mathrm{~J}$
75.There is no difference.
76.The electrons move between orbitals
77.6
78.2
$79.1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$ or $[\mathrm{Ne}] 3 s^{2} 3 p^{5}$
80.Argon
$81.1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$ or $[\mathrm{Ar}] 4 s^{2}$
82.Argon
83.violet
84.red
$85.2 s^{2} 2 p^{4}$
$86.3 s^{2} 3 p^{4}$
$87.4 s^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{4}$
$88.5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{4}$
$90.3 \mathrm{~s}^{2}$
$91.4 \mathrm{~s}^{2}$
$92.5 s^{2}$
$93.6 .4 \times 10^{-15} \mathrm{~m}$
$94.6 .63 \times 10^{-22} \mathrm{~nm}$
95.242 nm
96.FALSE
97.FALSE
98.TRUE
99.TRUE
100.TRUE
101.TRUE
102.TRUE

