Chapter 15 Acids and Bases

Student: \qquad

1. Which is not a characteristic property of acids?
A. tastes sour
B. turns litmus from blue to red
C. reacts with metals to yield CO_{2} gas
D. neutralizes bases
E. reacts with carbonates to yield CO_{2} gas
2. Which is the formula for the hydronium ion?
A. OH^{-}
B. $\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. $\mathrm{H}_{3} \mathrm{O}^{-}$
E. $\mathrm{H}_{2} \mathrm{O}^{+}$
3. In the reaction $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{HCO}_{3}^{-} \mathrm{H}_{3} \mathrm{O}^{+}$, the Bronsted acids are
A. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$.
B. $\mathrm{HCO}_{3}{ }^{-}$and $\mathrm{H}_{2} \mathrm{CO}_{3}$.
C. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$.
D. $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{CO}_{3}$.
E. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HCO}_{3}{ }^{-}$.
4. In the reactio $\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \leftrightharpoons \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, the conjugate acid-base pairs are pair 1 pair 2
Row $1 \quad \mathrm{HSO}^{-}$and $\mathrm{SO}_{4}{ }^{-2} ; \mathrm{H}_{2} \mathrm{O}$ and OH^{-}.
Row $2 \mathrm{HSO}_{4}$ and $\mathrm{H}_{3} \mathrm{O}^{+} ; \quad \mathrm{SO}_{4}{ }^{2-}$ and OH^{-}.
Row 3 HSO_{4}^{-}and $\mathrm{OH}^{-} ; \quad \mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{H}_{2} \mathrm{O}$.
\int Row $4 \quad \mathrm{HSO}_{4}^{-}$and $\mathrm{H}_{2} \mathrm{O} ; \quad \mathrm{OH}^{-}$and $\mathrm{SO}_{4}{ }^{2-}$.
Row $5 \quad \mathrm{HSO}_{4}^{-}$and $\mathrm{OH}^{-} ; \quad \mathrm{SO}_{4}{ }^{2-}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$.
A.
. Row 1
B. Row 2
C. Row 3
D. Row 4
E. Row 5
5. Identify the conjugate base of $\mathrm{HPO}_{4}{ }^{2-}$ in the reaction

$$
\mathrm{HCO}_{3}^{-}+\mathrm{HPO}_{4}^{2-} \leftrightharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{PO}_{4}^{3-}
$$

A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{HCO}_{3}{ }^{-}$
C. $\mathrm{H}_{2} \mathrm{CO}_{3}$
D. $\mathrm{PO}_{4}{ }^{3-}$
E. none of these
6. Identify the conjugate base of $\mathrm{HSO}_{4}{ }^{-}$in the reaction

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HSO}_{4}^{-} \leftrightharpoons \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{SO}_{4}^{2-}
$$

A. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$
E. $\quad \mathrm{SO}_{4}{ }^{2-}$
7. Identify the conjugate base of $\mathrm{HCO}_{3}{ }^{-}$in the reaction

$$
\mathrm{CO}_{3}^{2-}+\mathrm{HSO}_{4}^{-} \leftrightharpoons \mathrm{HCO}_{3}^{-}+\mathrm{SO}_{4}^{2-}
$$

A. $\mathrm{HSO}_{4}{ }^{-}$
B. $\mathrm{CO}_{3}{ }^{2-}$
C. OH^{-}
D. $\mathrm{H}_{3} \mathrm{O}^{+}$
E. $\mathrm{SO}_{4}{ }^{2-}$
8. Identify the conjugate base of $\mathrm{CH}_{3} \mathrm{COOH}$ in the reaction

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HSQ} \leftrightharpoons \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{CH}_{3} \mathrm{COO}^{-}
$$

A. $\quad \mathrm{HSO}_{4}{ }^{-}$
B. $\mathrm{SO}_{4}{ }^{2-}$
C. $\mathrm{CH}_{3} \mathrm{COO}$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$
E. OH^{-}
9. Identify be conjugate base of HClO_{3} in the reaction

$$
\mathrm{IO}_{3}^{-}+\mathrm{HSO}_{4}^{-} \leftrightharpoons \mathrm{HClO}_{3}+\mathrm{SO}_{4}^{2-}
$$

A. $\mathrm{Cl}_{3}{ }^{-}$
B. HSO_{4}^{-}
C. OH^{-}
D. $\mathrm{H}_{3} \mathrm{O}^{+}$
E. $\mathrm{SO}_{4}{ }^{2-}$
10. Identify the conjugate acid of $\mathrm{SO}_{4}{ }^{2-}$ in the reaction

$$
\mathrm{CO}_{3}^{2-}+\mathrm{HSO}_{4}^{-} \leftrightharpoons \mathrm{HCO}_{3}^{-}+\mathrm{SO}_{4}^{2-}
$$

A. $\mathrm{CO}_{3}{ }^{2-}$
B. HSO_{4}^{-}
C. OH^{-}
D. $\mathrm{H}_{3} \mathrm{O}^{+}$
E. $\mathrm{SO}_{4}{ }^{2-}$
11. Identify the conjugate acid of $\mathrm{HCO}_{3}{ }^{-}$in the reaction

$$
\mathrm{HCO}_{3}^{-}+\mathrm{HPO}_{4}{ }^{2-} \leftrightharpoons \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{PO}_{4}{ }^{3-}
$$

A. $\mathrm{H}_{2} \mathrm{O}$
B. HCO_{3}^{-}
C. $\mathrm{H}_{2} \mathrm{CO}_{3}$
D. $\mathrm{PO}_{4}{ }^{3-}$
E. $\mathrm{HPO}_{4}{ }^{2-}$
12. Identify the conjugate acid of $\mathrm{CO}_{3}{ }^{2-}$ in the reaction

$$
\mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \leftrightharpoons \mathrm{HCO}_{3}^{-}+\mathrm{HPO}_{4}^{2-}
$$

A. $\mathrm{H}_{2} \mathrm{CO}_{3}$
B. $\mathrm{HCO}_{3}{ }^{-}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{HPO}_{4}{ }^{2-}$
E. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
13. Which one of these statements abou trons acids is true?
A. All strong acids have H atoms bonded to electronegative oxygen atoms.
B. Strong acids are 100% ionized in water.
C. The conjugate base of a strong acid is itself a strong base.
D. Strong cids are very concentrated acids.
E. Strong ac produce solutions with a higher pH than weak acids.
14. One liter of an aqueous solution contains $6.02 \times 10^{21} \mathrm{H}_{3} \mathrm{O}^{+}$ions. Therefore, its $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration is

100 mole per liter.
.100 mole per liter.
.00 moke per liter.
D. $\quad 02 \times 10^{21}$ mole per liter.
E. 6.02×10^{23} mole per liter.
15. One liter of an aqueous solution contains $6.02 \times 10^{20} \mathrm{H}_{3} \mathrm{O}^{+}$ions. Therefore, its $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration is
A. $\quad 0.0100$ mole per liter.
B. 0.00100 mole per liter.
C. $\quad 1.00$ mole per liter.
D. 6.02×10^{20} mole per liter.
E. 6.02×10^{23} mole per liter.
16. What is the concentration of H^{+}in a 2.5 M HCl solution?
A. 0
B. $\quad 1.3 \mathrm{M}$
C. 2.5 M
D. 5.0 M
E. 10 . M
17. The OH^{-}concentration in a $1.0 \times 10^{-3} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution is
A. $0.50 \times 10^{-3} \mathrm{M}$.
B. $\quad 1.0 \times 10^{-3} \mathrm{M}$.
C. $2.0 \times 10^{-3} \mathrm{M}$.
D. $1.0 \times 10^{-2} \mathrm{M}$.
E. $\quad 0.020 \mathrm{M}$.
18. The OH^{-}concentration in a $7.5 \times 10^{-3} \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution is
A. $\quad 7.5 \times 10^{-3} \mathrm{M}$.
B. $1.5 \times 10^{-2} \mathrm{M}$.
C. $1.3 \times 10^{-12} \mathrm{M}$.
D. $1.0 \times 10^{-7} \mathrm{M}$.
E. $\quad 1.0 \times 10^{-14} \mathrm{M}$.
19. The OH^{-}concentration in a $2.5 \times 10^{-3} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solution is
A. $4.0 \times 10^{-12} \mathrm{M}$.
B. $2.5 \times 10^{-3} \mathrm{M}$.
C. $\quad 5.0 \times 10^{-3} \mathrm{M}$.
D. $\quad 1.2 \times 10^{-2} \mathrm{M}$.
E. $\quad 0.025 \mathrm{M}$.
20. What is the H^{+}ion concentration in a $4.8 \times 10^{-2} \mathrm{M} \mathrm{KOH}$ solution?
A. $\quad 4.8 \times 10^{-2} \mathrm{M}$
B. $1.0 \times 10^{-7} \mathrm{M}$
C. $4.8 \times 10^{-11} \mathrm{M}$
D. $4.8 \times 10^{-12} \mathrm{M}$
E. $\quad 2.1 \times 10^{-13} \mathrm{M}$
21. Calculate the H^{+}ion concentration in a $8.8 \times 10^{-4} \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution.
A. $8.8 \times 10^{-4} \mathrm{M}$
B. $1.8 \times 10^{-3} \mathrm{M}$
C. $2.2 \times 10^{-11} \mathrm{M}$
D. $\quad 1.1 \times 10^{-11} \mathrm{M}$
E. $\quad 5.7 \times 10^{-12} \mathrm{M}$
22. What is the OH^{-}ion concentration in a $5.2 \times 10^{-4} \mathrm{M} \mathrm{HNO}_{3}$ solution?
A. $\quad 1.9 \times 10^{-11} \mathrm{M}$
B. $1.0 \times 10^{-7} \mathrm{M}$
C. $\quad 5.2 \times 10^{-4} \mathrm{M}$
D. zero
E. $\quad 1.0 \times 10^{-4} \mathrm{M}$
23. A 0.10 M HF solution is 8.4% ionized. Galculate the H^{+}ion concentration.
A. $\quad 0.84 \mathrm{M}$
B. $\quad 0.12 \mathrm{M}$
C. $\quad 0.10 \mathrm{M}$
D. $\quad 0.084 \mathrm{M}$
E. $\quad 8.4 \times 10^{-3} \mathrm{M}$
24. A $0.14 \mathrm{M} \mathrm{HNO}_{2}$ solution is 5.7% ionized. Calculate the H^{+}ion concentration.
A. $\quad 8.0 \times 10^{-3} \mathrm{M}$
B. $\quad 0.057 \mathrm{M}$
C. $\quad 0.13 \mathrm{M}$
D. $\quad 0.14 \mathrm{M}$
0.80 M
25. Consider the weak acid $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid). If a $0.048 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution is 5.2% ionized, determine the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] concentration at equilibrium.
A. $\quad 0.25 \mathrm{M}$
B. $9.2 \times 10^{-3} \mathrm{M}$
C. $\quad 0.048 \mathrm{M}$
D. $\quad 0.052 \mathrm{M}$
E. $\quad 2.5 \times 10^{-3} \mathrm{M}$
26. A $0.10 \mathrm{M} \mathrm{NH}_{3}$ solution is 1.3% ionized. Calculate the H^{+}ion concentration.

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

A. $\quad 1.3 \times 10^{-3} \mathrm{M}$
B. $\quad 7.7 \times 10^{-2} \mathrm{M}$
C. $\quad 7.7 \times 10^{-12} \mathrm{M}$
D. $\quad 0.13 \mathrm{M}$
E. $\quad 0.10 \mathrm{M}$
27. Calculate the pH of a beer in which the hydrogen ios concentration $\$ 6.3 \times 10^{-5} \mathrm{M}$.
A. 4.2
B. 4.8
C. 5.63
D. 9.8
E. $\quad 14.0$
28. Determine the pH of a KOH solutionta mixing 0.251 g KOH with enough water to make 1.00×10^{2} mL of solution.
A. 1.35
B. 2.35
C. 7.00
D. 11.65
E. 12.65
29. Calculate the H^{+}ion concentration in lemon juice having a pH of 2.4.
30. Calculate the pH of a $3.5 \times 10^{-3} \mathrm{M} \mathrm{HNO}_{3}$ solution.
A. -2.46
B. 0.54
C. 2.46
D. $\quad 3.00$
E. 3.46
31. What is the pH of 10.0 mL of 0.0020 M HCl ?
A. 0.70
B. 2.70
C. 3.70
D. 5.70
E. 10.0
32. Calculate the pH of a $0.14 \mathrm{M} \mathrm{HNO}_{2}$ solution that is 5.7% ionized.
A. 0.85
B. $\quad 1.70$
C. 2.10
D. 11.90
E. 13.10
33. Calculate the pH of a 0.10 M HCN solution that is 0.0070% ionized.
A. 1.00
B. 0.00070
C. 3.15
D. 5.15
E. 7.00
34. What is the pH of a 0.0055 MHA (weak acid) solution that is 8.2% ionized?
A. 2.26
B. 3.35
C. 4.52
D. 8.21
E. $\quad 10.65$
35. Calculate the pH of a $6.71 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$ solution.
A. 12.83
B. 2.17
C. 11.82
D. 6.71
E. 1.17
36. Calculate the pH of $2.6 \times 10^{-2} \mathrm{M} \mathrm{KOH}$.
A. 12.41
B. 15.59
C. 2.06
D. 7.00
E. 1.59
37. Calculate the pH of a 1.6 M KOH solution.
A. $\quad 1.60$
B. -0.20
C. 0.20
D. 14.20
E. 13.80
38. What is the pH of a $0.014 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution?
A. 1.85
B. 1.55
C. 12.15
D. 12.45
E. 15.85
39. What is the pH of a $0.001 \mathrm{MCa}(\mathrm{OH})_{2}$ solution?
A. 3.0
B. $\quad 11.0$
C. 2.7
D. 17.0
E. 11.3
40. Calculate the hydrogen ion concentration in a solution of fruit juice having a pH of 4.25 .
A. $1.0 \times 10^{-14} \mathrm{M}$
B. $5.6 \times 10^{-5} \mathrm{M}$
C. $\quad 4.0 \times 10^{-25} \mathrm{M}$
D. $2.5 \times 10^{-4} \mathrm{M}$
E. $\quad 5.6 \times 10^{-4} \mathrm{M}$
41. The pH of tomato juice is about 4.5. Calculate the concentration of hydrogen ions in this juice.
A. $\quad 3 . \times 10^{-10} \mathrm{M}$
B. $3 . \times 10^{-5} \mathrm{M}$
C. $5 . \times 10^{-4} \mathrm{M}$
D. $\quad 4 . \mathrm{M}$
E. \quad 3. $\times 10^{10} \mathrm{M}$
42. The pH of a certain solution is 2.0 . How many $\mathrm{H}^{+}(\mathrm{aq})$ ions are there in 1.0 L of the solution?
A. 0.01 ions
B. 100 ions
C. 2 ions
D. $6 . \times 10^{21}$ ions
E. $6 . \times 10^{23}$ ions
43. The pH of a certain solution is 3.0 . How many $\mathrm{H}^{+}(\mathrm{aq})$ ions are there in 1.0 L of the solution?
A. 0.001 ions
B. 1,000 ions
C. $\quad 6 . \times 10^{20}$ ions
D. 3 ions
E. $\quad 6 . \times 10^{26}$ ions
44. Calculate the hydrogen ion concentration ina solution having a pH of 4.60 .
A. $\quad 4.0 \times 10^{-3} \mathrm{M}$
B. $\quad 4.0 \times 10^{-9} \mathrm{M}$
C. $\quad 4.0 \times 10^{-10} \mathrm{M}$
D. $2.5 \times 10^{-5} \mathrm{M}$
E. $\quad 2.5 \times 10^{-4} \mathrm{M}$
45. Calculate the hydrogen ion concentration in a solution of beer having a pH of 4.80.
A. $1.6 \times 10^{-4} \mathrm{M}$
B. $1.6 \times 10^{-5} \mathrm{M}$
C. $1.6 \times 10^{-6} \mathrm{M}$
D. $4.0 \times 10^{-8} \mathrm{M}$
E. $8.0 \times 10^{-5} \mathrm{M}$
46. The pH of a $\mathrm{Ba}(\mathrm{OH})_{2}$ solution is 10.00 . What is the H^{+}ion concentration of this solution?
A. $\quad 4.0 \times 10^{-11} \mathrm{M}$
B. $1.6 \times 10^{-10} \mathrm{M}$
C. $1.3 \times 10^{-5} \mathrm{M}$
D. $1.0 \times 10^{-10} \mathrm{M}$
E. $\quad 10$. M
47. Diet cola drinks have a pH of about 3.0 , while milk has a pH of about 7.0 . How many times greater is the $\mathrm{H}_{3} \mathrm{O}^{+}$concentration in diet cola than in milk?
A. 2.3 times higher in diet cola than in milk
B. 400 times higher in diet cola than in milk
C. 0.43 times higher in diet cola than in milk
D. 1,000 times higher in diet cola than in milk
E. 10,000 times higher in diet cola than in milk
48. The pH of coffee is approximately 5.0. How many times greater is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in coffee than in tap water having a pH of 8.0 ?
A. 0.62
B. 1.6
C. 30
D. 1,000
E. $\quad 1.0 \times 10^{4}$
49. The pH of coffee is approximately 5.0 . How many times greater is the $\left[\mathrm{H}^{+}\right]$in coffee than in neutral water?
A. 200
B. 100
C. 5.0
D. 1.4
E. 0.01
50. If the pH of an acid rain storm is approximately 3.0 , how many times greater is the $\left[\mathrm{H}^{+}\right]$in the rain than in a cup of coffee having a pH of 5.0 ?
A. 1000
B. 100
C. 20
D. 1.7
E. 0.60
51. What is the pH of a solution prepared by mixing 10.0 mL of a strong acid solution with $\mathrm{pH}=2.00$ and 10.0 mL of a strong acid solution with $\mathrm{pH}=6.00$?
A. 2.0
B. 2.3
C. 4.0
D. 6.0
E. 8.0
52. The pOH of a solution is 9.60 Calculate the hydrogen ion concentration in this solution.
A. $\quad 2.5 \times 10^{-10} \mathrm{M}$
B. $\quad 6.0 \times 10^{-9} \mathrm{M}$
C. $\quad 4.0 \times 10^{-5} \mathrm{M}$
D. $2.4 \times 10^{-4} \mathrm{M}$
E. $\quad 1.0 \times 10^{-14} \mathrm{M}$
53. The pOH of a solution is 10.40 Calculate the hydrogen ion concentration in the solution.
A. $\quad 4.0 \times 10^{-11} \mathrm{M}$
B. $\quad 3.6 \mathrm{M}$
C. $\quad 4.0 \times 10^{-10} \mathrm{M}$
D. $2.5 \times 10^{-4} \mathrm{M}$
E. $\quad 1.8 \times 10^{-4} \mathrm{M}$
54. Which solution will have the lowest pH?
A. $\quad 0.10 \mathrm{M} \mathrm{HCN}$
B. $\quad 0.10 \mathrm{M} \mathrm{HNO}_{3}$
C. $\quad 0.10 \mathrm{M} \mathrm{NaCl}$
D. $\quad 0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$
E. $\quad 0.10 \mathrm{M} \mathrm{NaOH}$
55. Which one of these responses is true with regard to a 0.1 M solution of a weak acid HA?
A. $\left[\mathrm{H}^{+}\right]>\left[\mathrm{A}^{-}\right]$
B. $\mathrm{pH}=1.0$
C. $\left[\mathrm{H}^{+}\right]<\left[\mathrm{A}^{-}\right]$
D. $\mathrm{pH}>1.0$
$\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$
56. Acid strength decreases in the series $\mathrm{HI}>\mathrm{HSO}_{4}{ }^{-}>\mathrm{HF}>\mathrm{HCN}$. Which of these anions is the weakest base?
A. I^{-}
B. $\mathrm{SO}_{4}{ }^{2-}$
C. F^{-}
D. CN^{-}
57. Acid strength decreases in the series: strongest $\mathrm{HSO}_{4}{ }^{-}>\mathrm{HF}>\mathrm{HCN}$. Which of these species is the weakest base?
A. HF
B. $\mathrm{SO}_{4}{ }^{2-}$
C. F^{-}
D. CN^{-}
58. Acid strength increases in the series: $\mathrm{HCN}<\mathrm{HF}<\mathrm{HSO}_{4}^{-}$. Which of these species is the strongest base?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. SO_{4}^{2-}
C. F^{-}
D. CN^{-}
E. $\mathrm{HSO}_{4}{ }^{-}$
59. Acid strength decreases in the series: $\mathrm{HCl}>\mathrm{HSO}_{4}>\mathrm{HCN}$. Which of these species is the strongest base?
A. CN^{-}
B. $\mathrm{SO}_{4}{ }^{2-}$
C. HCN
D. Cl^{-}
60. Acid strength decreases in the series: $\mathrm{HNO}_{3}>\mathrm{HF}>\mathrm{CH}_{3} \mathrm{COOH}$. Which of these species is the strongest base?
A. NO_{3}^{-}
B. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
C. F^{-}
D. $\mathrm{CH}_{3} \mathrm{COOH}$
61. Which of these acids is the strongest?
A. $\mathrm{H}_{2} \mathrm{SeO}_{3}$
B. $\mathrm{H}_{2} \mathrm{TeO}_{3}$
C. $\mathrm{H}_{2} \mathrm{SO}_{3}$
62. Arrange the acids $\mathrm{HOCl}, \mathrm{HClO}_{3}$, and HClO_{2} in order of increasing acid strength.
A. $\mathrm{HOCl}<\mathrm{HClO}_{3}<\mathrm{HClO}_{2}$
B. $\mathrm{HOCl}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}$
C. $\mathrm{HClO}_{2}<\mathrm{HOCl}<\mathrm{HClO}_{3}$
D. $\mathrm{HClO}_{3}<\mathrm{HOCl}<\mathrm{HClO}_{2}$
E. $\mathrm{HClO}_{3}<\mathrm{HClO}_{2}<\mathrm{HOCl}$
63. Arrange the acids $\mathrm{HOBr}, \mathrm{HBrO}_{3}$, and HBrO_{2} in order of increasing acid strength.
A. $\mathrm{HOBr}<\mathrm{HBrO}_{3}<\mathrm{HBrO}_{2}$
B. $\mathrm{HOBr}<\mathrm{HBrO}_{2}<\mathrm{HBrO}_{3}$
C. $\mathrm{HBrO}_{2}<\mathrm{HOBr}<\mathrm{HBrO}_{3}$
D. $\mathrm{HBrO}_{3}<\mathrm{HOBr}<\mathrm{HBrO}_{2}$
E. $\mathrm{HBrO}_{3}<\mathrm{HBrO}_{2}<\mathrm{HOBr}$
64. Arrange the acids $\mathrm{HBr}, \mathrm{H}_{2} \mathrm{Se}$, and $\mathrm{H}_{3} \mathrm{As}$ in order of increasing acid strength.
A. $\mathrm{HBr}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{3} \mathrm{As}$
B. $\mathrm{HBr}<\mathrm{H}_{3} \mathrm{As}<\mathrm{H}_{2} \mathrm{Se}$
C. $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{3} \mathrm{As}<\mathrm{HBr}$
D. $\mathrm{H}_{3} \mathrm{As}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{HBr}$
E. $\mathrm{H}_{3} \mathrm{As}<\mathrm{HBr}<\mathrm{H}_{2} \mathrm{Se}$
65. Arrange the acids $\mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{Te}$, and $\mathrm{H}_{2} \mathrm{~S}$ in order of increasing acid strength.
A. $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
B. $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}$
C. $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Te}$
E. $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}$
66. When comparing acid strength of binary acids HX , as X varies within a particular group of the periodic table, which one of these factors dominates in affecting the acid strength?
A. bond strength
B. electron withdrawing effects
C. percent ionic character of the $\mathrm{H}-\mathrm{X}$ bond
D. solubility
E. Le Châtelier's principle
67. Which one of these net ionic equations represents the reaction of a strong acid with a weak base?
A. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$
B. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})$
C. $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HCN}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
D. $\mathrm{HCN}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
68. Which one of these net ionic equations represents the reaction of a strong acid with a strong base?
A. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$
B. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})$
C. $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HCN}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
D. $\mathrm{HCN}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
69. Which one of these equations represents the reaction of a weak acid with a weak base?
A. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$
B. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})$
C. $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HCN}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
D. $\mathrm{HCN}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
70. Which one of these equations represents the reaction of a weak acid with a strong bse?
A. $\quad \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$
B. $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})$
C. $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HCN}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
D. $\mathrm{HCN}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{CN}(\mathrm{a}$
71. Predict the direction in which the equilibrium will efo the reaction
$\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{F}^{-} \leftrightharpoons \mathrm{HCO}_{3}^{-}+\mathrm{HF}$.
$\mathrm{K}_{\mathrm{a} 1}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=4.2 \times 10^{-7} ; \mathrm{K}_{\mathrm{a}}(\mathrm{NF})=7.1 \times 10^{-4}$
A. to the right
B. to the left
C. in the middle
72. Predict the direction in which the equilibrium will lie for the reaction
$\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \stackrel{+}{\leftrightharpoons} \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$.
$\mathrm{K}_{\mathrm{a} 1}\left(\mathrm{H}_{3} \mathrm{PC},=7.5 \times 10^{-3} ; \mathrm{K}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\right.$ very large
A. to the right

73. Predict the direction in which the equilibrium will lie for the reaction

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \leftrightharpoons \mathrm{HSO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{a} 1}\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)=1 \times 10^{-2} ; \mathrm{K}_{\mathrm{a} 1}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=4.2 \times 10^{-7}
\end{aligned}
$$

A. to the right
B. to the left
C. in the middle
74. Predict the direction in which the equilibrium will lie for the reaction

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{HF} \leftrightharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{F}^{-}
$$

$$
\mathrm{K}_{\mathrm{a}}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)=6.5 \times 10^{-5} ; \mathrm{K}_{\mathrm{a}}(\mathrm{HF})=7.1 \times 10^{-4}
$$

A. to the right
B. to the left
C. in the middle
75. Predict the direction in which the equilibrium will lit for the reaction

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NO}_{3}^{-} \leftrightharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{HNO}_{3}
$$

$$
\mathrm{K}_{\mathrm{a}}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=7.5 \times 10^{-3}
$$

A. to the right
B. to the left
C. in the middle
76. Which of the following yields abasie solution when dissolved in water?
A. NO_{2}
B. $\mathrm{P}_{4} \mathrm{O}_{10}$
C. $\mathrm{K}_{2} \mathrm{O}$
D. NaCl
E. SO_{2}
77. Which of the following yields an acidic solution when dissolved in water?

D. NaCl
E. $\mathrm{Ca}(\mathrm{OH})_{2}$
78. Hard water deposits (calcium carbonate) have built up around your bathroom sink. Which one of these substances would be most effective in dissolving the deposits?
A. ammonia
B. bleach (sodium hypochlorite)
C. lye (sodium hydroxide)
D. vinegar (acetic acid)
79. $\mathrm{P}_{4} \mathrm{O}_{10}$ is classified as an acidic oxide because it
A. reacts with acids to produce a salt.
B. is insoluble in water.
C. reacts with water to produce OH^{-}.
D. gives a solution of phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, on dissolving in water.
E. can act as a Lewis base by donating electron pairs.
80. In the reaction $\mathrm{CaO}(\mathrm{s})+\mathrm{SO}_{2}(\mathrm{~g}) \leftrightharpoons \mathrm{CaSO}_{3}(\mathrm{~s})$,
A. O^{2-} acts as a Lewis base, and SO_{2} acts as a Lewis acid.
B. Ca^{2+} acts as a Lewis base, and $\mathrm{SO}_{4}{ }^{2-}$ acts as a Le ris
C.
$\mathrm{SO}_{4}{ }^{2-}$ acts as a Lewis base, and SO_{2} acts as a Lewis cid
C. $\quad \mathrm{SO}_{4}{ }^{2-}$ acts as a Lewis base, and SO_{2} acts as a Lewis cid.
D. SO_{2} acts as a Lewis base, and O^{2-} acts a Le Iocid.
E. $\quad \mathrm{SO}_{2}$ acts as a Lewis base, and Ca^{2+} acts as Lewis atid.
81. Which of these species will act as a Lewis acid?
A. NH_{3}
B. NH_{4}^{+}
C. $\mathrm{H}_{2} \mathrm{O}$
D. BF_{3}
E. F^{-}
82. Which of these species is a Lewis acid, but not a Brønsted acid?
A. HCN
B. $\mathrm{CO}_{3}{ }^{2-}$
C. OH^{-}

83. Find the pH of a 0.135 M aqueous solution of periodic acid $\left(\mathrm{HIO}_{4}\right)$, for which $\mathrm{K}_{\mathrm{a}}=2.3 \times 10^{-2}$.
A. 1.25
B. 3.28
C. 1.17
D. 1.34
E. 1.64
84. Find the pH of a 0.183 M aqueous solution of hypobromous acid (HOBr), for which $\mathrm{K}_{\mathrm{a}}=2.06 \times 10^{-9}$.
A. 4.72
B. 8.69
C. 3.97
D. 4.34
E. 9.28
85. Find the pH of a 0.200 M aqueous solution of dichloroacetic acid, for which $\mathrm{K}_{\mathrm{a}}=3.32 \times 10^{-2}$
A. 0.75
B. 2.71
C. $\quad 1.05$
D. 2.35
E. $\quad 1.18$
86. Hydrosulfuric acid is a diprotic acid, for which $K_{a 1}=5.7 \times 10^{-8}$ and $K_{a 2}=1 \times 10^{-19}$. Determine the concentration of sulfide ion in a 0.10 M hydrosulfuric solution.
A. $\quad 0.10 \mathrm{M}$
B. $7.5 \times 10^{-5} \mathrm{M}$
C. $5.7 \times 10^{-9} \mathrm{M}$
D. $1 \times 10^{-19} \mathrm{M}$
E. $\quad 1 \times 10^{-20} \mathrm{M}$
87. Calculate the concentration of oxalate ion $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$ in a 0.175 M solution of oxalic acid $\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}\right)$. [For oxalic acid, $\mathrm{K}_{\mathrm{a} 1}=6.5 \times 10^{-2}, \mathrm{~K}_{\mathrm{a} 2}=6.1 \times 10^{-5}$.]
A. $\quad 0.11 \mathrm{M}$
B. $\quad 6.1 \times 10^{-5} \mathrm{M}$
C. $\quad 4.0 \times 10^{-6} \mathrm{M}$
D. 0.0791 M
E. $\quad 0.175 \mathrm{M}$
88. Calculate the concentration of chromate ion $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$ in a 0.450 M solution of chromic acid $\left(\mathrm{H}_{2} \mathrm{CrO}_{4}\right)$. [For chromic acid, $\mathrm{K}_{\mathrm{a} 1}=0.18, \mathrm{~K}_{\mathrm{a} 2}=3.2 \times 10^{-7}$.]

$$
3.2 \times 10^{-7} \mathrm{M}
$$

B. $\quad 1.5 \times 10^{-6} \mathrm{M}$
C. $\quad 0.081 \mathrm{M}$
D. $1.1 \times 10^{-6} \mathrm{M}$
E. $\quad 0.21 \mathrm{M}$
89. Calculate the concentration of malonate ion $\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}{ }^{2-}\right)$ in a 0.200 M solution of malonic acid $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{4}\right)$. [For malonic acid, $\mathrm{K}_{\mathrm{a} 1}=1.4 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=2.0 \times 10^{-6}$.]
A. $\quad 2.8 \times 10^{-4} \mathrm{M}$
B. $\quad 0.016 \mathrm{M}$
C. $1.8 \times 10^{-4} \mathrm{M}$
D. $1.4 \times 10^{-3} \mathrm{M}$
E. $\quad 2.0 \times 10^{-6} \mathrm{M}$
90. For $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{~K}_{\mathrm{a} 1}=7.3 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=6.2 \times 10^{-6}$, and $\mathrm{K}_{\mathrm{a} 3}=4.8 \times 10^{-13}$. An aqueous solution of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ therefore would be
A. neutral.
B. basic.
C. acidic.
91. For $\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{~K}_{\mathrm{a} 1}=7.3 \times 10^{-3}, \mathrm{~K}_{\mathrm{a} 2}=6.2 \times 10^{-6}$, and $\mathrm{K}_{\mathrm{a} 3}=4.8 \times 10^{-13}$. An aqueous.solution of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ therefore would be
A. neutral.
B. basic.
C. acidic.
92. An aqueous solution of KCl would be
A. neutral.
B. basic.
C. acidic.
93. Which one of these salts will form a neutral solution on dissolving in water?
A. NaCl
B. KNO_{2}
C. NaCN
D. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
E. FeCl_{3}
94. Which one of these salts will form a basic solution on dissolving in water?
A. NaCl
B. KCN
C. NaNO_{3}
D. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
E. FeCl_{3}
95. In 0.10 M KCN , the chemical species with the highest concentration (except $\mathrm{H}_{2} \mathrm{O}$) is
A. Na^{+}.
B. CN^{-}.
C. $\mathrm{H}_{3} \mathrm{O}^{+}\left(\right.$or $\left.\mathrm{H}^{+}\right)$.
D. OH^{-}.
E. K^{+}.
96. What is the pH of a 0.20 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$? $\left[\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}\right]$
A. 3.74
B. 4.98
C. 6.53
D. 9.02
E. 10.25
97. Calculate the pH of a 0.021 M NaCN solution. $\left[\mathrm{K}_{\mathrm{a}}(\mathrm{HCN})=4.9 \times 10^{-10}\right]$
A. 1.68
B. 3.18
C. 5.49
D. 7.00
E. 10.82
98. Consider the weak bases below and their K_{b} values:

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}$	$\mathrm{K}_{\mathrm{b}}=1.3 \times 10^{-10}$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{~K}_{\mathrm{b}}=5.6 \times 10^{-4}$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{~K}_{\mathrm{b}}=1.7 \times 10^{-9}$

Arrange the conjugate acids of these weak bases in order of increasing acid strength.
A. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}<\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{OH}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}$
B. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{OH}<\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}$
C. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}<\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{OH}$
D. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{OH}<\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}<\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$
E. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}<\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}<\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{OH}$
99. Which response gives the products of hydrolysis of $\mathrm{NH}_{4} \mathrm{Cl}$?
A. $\mathrm{NH}_{4}+\mathrm{HCl}$
B. $\mathrm{NH}_{3}+\mathrm{OH}^{-}+\mathrm{HCl}$
C. $\mathrm{NH}_{3}+\mathrm{H}^{+}$
D. $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{HCl}$
E. No hydrolysis occurs.
100. Which response gives the products of hydrolysis of KF?
A. $\mathrm{KOH}+\mathrm{HF}$
B. $\mathrm{OH}^{-}+\mathrm{HF}$
C. $\mathrm{KOH}+\mathrm{H}^{+}+\mathrm{F}^{-}$
D. $\mathrm{KH}+\mathrm{F}^{-}+\mathrm{OH}^{-}$
E. No hydrolysis occurs.
101. Which one of these salts will form a basic solution upon dissolving in water?
A. NaCl
B. NaNO_{2}
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
D. KBr
E. AlCl_{3}
102. Which one of these salts will form a basic solution upon dissolving in water?
A. NaI
B. NaF
C. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
D. LiBr
E. $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$
103. Which one of these salts will form an acidic solution upon dissolving in water?
A. LiBr
B. NaF
C. $\mathrm{NH}_{4} \mathrm{Br}$
D. KOH
E. NaCN
104. Which one of the following salts will form an acidic solution on dissolving in water?
A. LiBr
B. NaF
C. KOH
D. FeCl_{3}

E. NaCN

105. What mass of ammonium chloride must be added to 250 . mL of water to give a solution with $\mathrm{pH}=4.85$? $\left[\mathrm{K}_{\mathrm{b}}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}\right]$
A. $\quad 4.7 \mathrm{~g}$
B. 75 g
C. $2.3 \times 10^{-3} \mathrm{~g}$
D. 19 g
E. 10.g
106. What mass of sodium nitrite must be added to $350 . \mathrm{mL}$ of water to give a solution with $\mathrm{pH}=8.40$? $\left[\mathrm{K}_{\mathrm{a}}\left(\mathrm{HNO}_{2}\right)=5.6 \times 10^{-4}\right]$
A. 68 g
B. $\quad 1.7 \times 10^{-4} \mathrm{~g}$
C. $\quad 0.039 \mathrm{~g}$
D. 8.3 g
E. 24 g
107. What mass of potassium hypochlorite must be added to 450 mL of water to give a solution with $\mathrm{pH}=$ $10.20 ?\left[\mathrm{~K}_{\mathrm{a}}(\mathrm{HClO})=4.0 \times 10^{-8}\right]$
A. 20.g
B. 0.032 g
C. 4.1 g
D. 2.4 g
E. $\quad 9.1 \mathrm{~g}$
108. What is the pH of a solution prepared by mixing $100 . \mathrm{mL}$ of 0.0500 M HCl with $300 . \mathrm{mL}$ of 0.500 M HF ? $\left[\mathrm{K}_{\mathrm{a}}(\mathrm{HF})=7.1 \times 10^{-4}\right]$
A. 1.47
B. 1.90
C. 1.30
D. 1.63
E. 2.82
109. What is the pH of a solution prepared by mixing 50.0 mL of 0.300 M HCl with 450.0 mL of 0.400 M $\mathrm{HIO}_{3} ?\left[\mathrm{~K}_{\mathrm{a}}\left(\mathrm{HIO}_{3}\right)=1.6 \times 10^{-1}\right]$
A. 1.52
B. 0.80
C. 0.72
D. 0.89
E. 0.66
110. The equilibrium constant for the reaction

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}) \leftrightharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})
$$

is 3.6 at $25^{\circ} \mathrm{C}$. If K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}, what is the acid dissociation constant for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$?
A. 5.0×10^{-6}
B. 6.5×10^{-5}
C. 2.3×10^{-4}
D. 8.3×10^{-5}
E. 5.6×10^{-6}
111. The equilibrium constant for the reaction

$$
\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{COOH}(\mathrm{aq})+\mathrm{HCOO}^{-}(\mathrm{aq}) \leftrightharpoons \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{HCOOH}(\mathrm{aq})
$$

is 7.23×10^{-2} at $25^{\circ} \mathrm{C}$. If K_{a} for formic acid (HCOOH) is 1.77×10^{-4}, what is the dissociation constant for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{COOH}$?
A. 2.45×10^{-3}
B. 4.08×10^{-2}
C. $\quad 7.81 \times 10^{-4}$
D. 1.00×10^{-4}
E. 1.28×10^{-5}
112. For maleic acid, $\mathrm{HOOCCH}=\mathrm{CHCOOH}, \mathrm{K}_{\mathrm{a}}=1.2 \times 10^{-2}$ an $\mathrm{K}_{\mathrm{a} 2}=8.57 \times 10^{-7}$. What is the concentration of maleate ion $\left({ }^{-} \mathrm{OOCCH}=\mathrm{CHCOO}^{-}\right)$in a 0.15 M M aquens solution of maleic acid?
A. $8.57 \times 10^{-7} \mathrm{M}$
B. $2.79 \times 10^{-6} \mathrm{M}$
C. $1.86 \times 10^{-5} \mathrm{M}$
D. $4.60 \times 10^{-2} \mathrm{M}$
E. $\quad 1.19 \times 10^{-1} \mathrm{M}$
113. Aspartic acid $\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{4}\right)$, one of the 20 essential amino acids, has two ionizable hydrogens. At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{a} 1}$ $=1.38 \times 10^{-}$and $\mathrm{K}_{\mathrm{a} 2}=1.51 \times 10^{-10}$. What is the concentration of doubly ionized aspartate ions in a 0.125 M aqueous sol on of aspartie acid?
A. $3.33 \times 10^{-2} \mathrm{M}$

114. What mass of sodium cyanide must be added to $250 . \mathrm{mL}$ of water at $25^{\circ} \mathrm{C}$ in order to obtain a solution having a pH of 10.50 ? $\left(\mathrm{K}_{\mathrm{a}}(\mathrm{HCN})=4.9 \times 10^{-10}\right)$
A. 200 g
B. 0.035 g
C. 0.066 g
D. 1.1 g
E. $\quad 0.26 \mathrm{~g}$
115. What mass of sodium formate (HCOONa) must be added to 350 mL of water at $25^{\circ} \mathrm{G}$ in order to obtain a solution having a pH of 8.50 ? $\left(\mathrm{K}_{\mathrm{a}}(\mathrm{HCOOH})=1.77 \times 10^{-4}\right)$
A. $\quad 0.23 \mathrm{~g}$
B. 4.3 g
C. 35 g
D. 12 g
E. 130 g
116. A tablet of a common over-the-counter drug contains 200. mg of caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$. What is the pH of the solution resulting from the dissolution of two of these tablets in $225 . \mathrm{mL}$ of water at $25^{\circ} \mathrm{C}$? (For caffeine, $\mathrm{K}_{\mathrm{b}}=4.1 \times 10^{-4}$.)
A. 2.76
B. 7.67
C. 10.96
D. 6.33
E. 11.24
117. Morphine, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$, is often used to control severe post-operative pain. What is the pH of the solution made by dissolving 25.0 mg of morphine in 100 . mL of water at $25^{\circ} \mathrm{C}$? (For morphine, $\mathrm{K}_{\mathrm{b}}=1.62 \times 10^{-6}$.)
A. 9.57
B. 9.08
C. 3.79
D. 9.87
E. 4.43
118. Which of these lists of molecules is arranged in order of increasing acid strength?
A. $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Se}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}$
C. $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}$
D. $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{O}$
E. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}$
119. Which of these lists of molecules is arranged in order of increasing acid strength: $\mathrm{HI}, \mathrm{H}_{2} \mathrm{Te}, \mathrm{H}_{3} \mathrm{Sb}$.
A. $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{3} \mathrm{Sb}<\mathrm{HI}$
B. $\mathrm{HI}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{3} \mathrm{Sb}$
C. $\mathrm{HI}<\mathrm{H}_{3} \mathrm{Sb}<\mathrm{H}_{2} \mathrm{Te}$
D. $\mathrm{H}_{3} \mathrm{Sb}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{HI}$
E. $\mathrm{H}_{3} \mathrm{Sb}<\mathrm{HI}<\mathrm{H}_{2} \mathrm{Te}$
120. Identify the conjugate acid-base pairs in the reaction

$$
\mathrm{HSO}_{4}^{-}+\mathrm{HF} \leftrightharpoons \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{F}^{-}
$$

One conjugate acid-base pair is \qquad ; the other acid-base pair is
121. Which of these acids is stronger, $\mathrm{H}_{3} \mathrm{PO}_{4}$ or $\mathrm{H}_{3} \mathrm{AsO}_{4}$?
122. Which of these acids is stronger, $\mathrm{H}_{4} \mathrm{AsO}_{2}$ or $\mathrm{H}_{3} \mathrm{AsO}_{4}$?
123. Which of these acids is stronger, $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{HSO}_{4}{ }^{-}$?
125. $\mathrm{Al}(\mathrm{OH})_{3}$ is an amphoteric hydroxide. Write a balanced ionic equation to show its reaction with HNO_{3}.
126. $\mathrm{Al}(\mathrm{OH})_{3}$ is an amphoteric hydroxide. Write a balanced ionic equation to show its reaction with KOH .
127. Write the chemical formula for hydrochloric acid.
128. Write the chemical formula for nitric acid.
129. Write the chemical formula for sulfuric acid.
130. Write the chemical formula for phosphoric acid.
131. Write the chemical formula for perchloric acid.
132. Write the formula for the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$.
133. Calculate the pH of a solution containing 0.20 g of NaOH in $2,000 . \mathrm{mL}$ of solution.
134. Calculate the pOH of a solution containing 0.25 g of HCl in $800 . \mathrm{mL}$ of solution.
135. Calculate the H^{+}ion concentration in a solution with a pH of 3.85 .
136. If the pH of stomach acid is 1.0, what is the hydroxide ion concentration in this solution?
137. If the pH of liquid bleach is 12.0 , what is the hydroxide ion concentration in this solution?
138. If the pH of pure water is 7.0 , what is the hydroxide ion concentration in pure water?
139. If the pH of tomato juice is 4.0 , what is the hydroxide ion concentration in this solution?
140. If the pH of seawater is 8.0 , what is the hydroxide ion concentration in seawater?
141. The pH of a sample of river water is 6.0. A sample of effluent from a food processing plant has a pH of 4.0. What is the ratio of hydronium ion concentration in the effluent to the ion concentration in the river?
142. What concentration of potassium hydroxide will result from the reaction of 0.170 g of potassium with 100 . ml of water?
143. What volume of hydrogen, at STP, will be formed by the reaction of 0.170 g of potassium with 100 . ml of water?
144. Lime is used in farming to reduce the acidity of the soil. The chemical name for lime is calcium oxide. When water in the soil reacts with lime, what base is formed?
145. The compound $\mathrm{CH}_{3} \mathrm{NH}_{2}$ reacts with water to form $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$and OH . What role does $\mathrm{CH}_{3} \mathrm{NH}_{2}$ play in this reaction?
146. HCN is classified as a weak acid in water. What does this classification mean?
147. A sample of rainwater has apH of 3.5. The concentration of what ion is approximately $3 \times 10^{-4} \mathrm{M}$ in this rain sample?
148. The pH of rain collected on a remote island in the Pacific is assumed to be unaffected by human pollution. The pH of the rainwater on this island will be \qquad .
149. An unknown substance was added to a solution and the pH decreases. What type of substance was added?
150. The pH of a 0.02 M solution of an unknown weak base is 8.1 . What is the pK_{b} of the unknown base?
151. A solution containing $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ has a pH of 9.5. What is the $\left.\left[\mathrm{NH}_{3}\right] \times \mathrm{NH}_{4}^{+}\right]$ratio in this solution? (For ammonia, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$.)
152. When 2.0×10^{-2} mole of nicotinic acid (a monoprotic acid) is dissolved in $350 . \mathrm{mL}$ of water, the pH is 3.05. What is the K_{a} of nicotinic acid?
153. A 8.0 M solution of formic acid (HCOOH) is 0.47% ionized. What is the K_{a} of formic acid?
154. The pH of a 0.6 M solution of a weak acid is 4.0. What percent of the acid has ionized?
155. A solution with a pH of 8 has a hydrogen ion concentration $\left[\mathrm{H}^{+}\right]$that is 30 times greater than that of a solution of pH 11.

True False
156. A solution of HNO_{3} would change the color of litmus from red to blue.

True False
157. In the reaction $\mathrm{HNO}_{3}+\mathrm{NH}_{3} \leftrightharpoons \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}{ }^{-}, \mathrm{NH}_{4}^{+}$and NH_{3} are a conjugate acid-base pair.

True False
158. Of the two acids HBr and $\mathrm{H}_{2} \mathrm{Se}, \mathrm{H}_{2} \mathrm{Se}$ is the stronger acid.

True False
159. In the reaction $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s}), \mathrm{Ag}^{+}$acts as a Lewis acid.

True False
160. In aqueous solutions at $25^{\circ} \mathrm{C}$, the sum of the jon coneentrations $\left.\mathrm{HH}^{+}\right]+\left[\mathrm{OH}^{-}\right]$) equals 1×10^{-14}.

True False

Chapter 15 Acids and Bases Key
1.C
2.C
3.D
4.A
5.D
6.E
7.B
8.C
9.A
10.B
11.C
12.B
13.B
14.A
15.B
16.C
17.C
18.B
19.C
20.E
21.E
22.A
23.E
24.A
25.E
26.C
27.A
28.E
120. $\mathrm{HF}-\mathrm{F}^{-} ; \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{HSO}_{4}^{-}$
121. $\mathrm{H}_{3} \mathrm{PO}_{4}$
122. $\mathrm{H}_{3} \mathrm{AsO}_{4}$
123. $\mathrm{H}_{2} \mathrm{SO}_{4}$
124. The solution with $\mathrm{pH}=2.0$
$125 . \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HNO}_{3} \rightarrow \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$126 . \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{KOH} \rightarrow \mathrm{K}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]$
$127 . \mathrm{HCl}$
128. HNO_{3}
129. $\mathrm{H}_{2} \mathrm{SO}_{4}$
$130 . \mathrm{H}_{3} \mathrm{PO}_{4}$
131. HClO_{4}
$132 . \mathrm{HPO}_{4}{ }^{2-}$
133.11.40
134.11.93
$135.1 .4 \times 10^{-4} \mathrm{M}$
$136.1 \times 10^{-13} \mathrm{M}$
$137.1 \times 10^{-2} \mathrm{M}$
$138.1 \times 10^{-7} \mathrm{M}$
$139.1 \times 10^{-10} \mathrm{M}$
$140.1 \times 10^{-6} \mathrm{M}$
141.The hydronium ion concentration in the effluent is 100 times greater than the hydronium ion concentration in the river.
$142.4 .35 \times 10^{-2} \mathrm{M}$
$143.4 .87 \times 10^{-2} \mathrm{~L}$
$144 . \mathrm{Ca}(\mathrm{OH})_{2}$
145. $\mathrm{CH}_{3} \mathrm{NH}_{2}$ acts as a base.
146.A relatively small fraction of the acid undergoes ionization.
$147 . \mathrm{H}_{3} \mathrm{O}^{+}$
148.less than 7
149.an acid
150.10.1
151.1.8
$152.1 .4 \times 10^{-5}$
$153.1 .77 \times 10^{-4}$
154.0.02 \%
155.FALSE
156.FALSE
157.TRUE
158.FALSE
159.TRUE

