Chapter 15 Acids and Bases

Student: _

- 1. Which is *not* a characteristic property of acids?
 - A. tastes sour
 - B. turns litmus from blue to red
 - C. reacts with metals to yield CO₂ gas
 - D. neutralizes bases
 - E. reacts with carbonates to yield CO₂ gas
- 2. Which is the formula for the hydronium ion?
 - A. OH
 - B. H₂O
 - C. H_3O^+
 - D. H₃O⁻
 - E. H_2O^+

3. In the reaction $H_2CO_3 + H_2O \iff HCO_3 + H_3O^+$, the Brønsted acids are

- A. H_2CO_3 and H_2O .
- B. HCO_3^- and H_2CO_3 .
- C. H_2O and H_3O^+ .
- D. H_3O^+ and H_2CO_3
- E. H_2O and HCO_3 .

4. In the reaction $HSO_4(aq) \rightarrow OH(aq) \iff SO_4^2(aq) + H_2O(1)$, the conjugate acid-base pairs are pair 1

Row 1 HSO_4^- and $SO_4^2^-$; H_2O and OH^- .

Row 2 HSO_4^+ and H_3O^+ ; SO_4^2 - and OH^- .

Row $3_{\text{HSO}_4^-}$ and OH⁻; SO₄²⁻ and H₂O.

Row HSO₄⁻ and H₂O; OH⁻ and SO₄²⁻.

Row 5 HSO_4^- and OH^- ; $SO_4^2^-$ and H_3O^+ .

- A. Row 1B. Row 2
- C. Row 3
- D. Row 4
- E. Row 5

- Identify the conjugate base of HPO_4^{2-} in the reaction 5. $HCO_3^- + HPO_4^{2-} \iff H_2CO_3 + PO_4^{3-}$
 - H_2O A.
 - B. HCO₃
 - C. H_2CO_3
 - PO_4^{3-} D.
 - E. none of these
- 6. Identify the conjugate base of HSO₄⁻ in the reaction $H_2PO_4^- + HSO_4^- \iff H_3PO_4 + SO_4^{2-}$
 - H_2PO_4 A.
 - H_2SO_4 Β.
 - C. H_2O
 - D. H₃PO₄
 - SO_4^{2-} E.
- Identify the conjugate base of HCO_3^- in the reaction 7.
 - $\text{CO}_3^2 + \text{HSO}_4 \implies \text{HCO}_3 + \text{SO}_4^2$
 - A. HSO₄
 - CO_3^2 Β.
 - C. OH
 - D. H₃O
 - SO_4^{2-} E.
- Identify the conjugate base of CH_3COOH in the reaction 8. $CH_3COOH + HSO$ $H_2SO_4 + CH_3COO^-$
 - HSO_4^- A.
 - SO_4^2 Β.
 - C. CH₃COO
 - D. H₂SO₄
 - E. OH

Identify the conjugate base of HClO₃ in the reaction 9. O_4^{2-}

$$Olo_3$$
 + HSO₄ \iff HClO₃ + S

- A.
- B. HSO₄
- C. OH
- H_3O^+ D.
- SO_4^{2} E.

- 10. Identify the conjugate acid of SO_4^{2-} in the reaction $CO_3^{2-} + HSO_4^{-} \iff HCO_3^{-} + SO_4^{2-}$
 - A. CO_3^{2-}
 - B. HSO4
 - C. OH-
 - D. H_3O^+
 - SO_4^{2} E.
- 11. Identify the conjugate acid of HCO_3^- in the reaction

 $HCO_{3}^{-} + HPO_{4}^{2-} \implies H_{2}CO_{3} + PO_{4}^{3-}$

- A. H₂O
- HCO₃ B.
- H_2CO_3 C.
- D. PO_4^{3-} E. HPO_4^{2-}
- 12. Identify the conjugate acid of CO_3^{2-} in the reaction $CO_3^{2-} + H_2PO_4^{-} \iff HCO_3^{-} + HPO_4^{2-}$
 - A. H_2CO_3
 - B. HCO3
 - C. H_2O
 - HPO₄²⁻ D.
 - E. H_2PO_4
- 13. Which one of these statements about strong acids is true?
 - All strong acids have H atoms bonded to electronegative oxygen atoms. A.
 - Strong acids are 100% tonized in water. Β.
 - The conjugate base of a strong acid is itself a strong base. C.
 - Strong scids are very concentrated acids. D.
 - Strong acids produce solutions with a higher pH than weak acids. E.
- 14. One liter of an aqueous solution contains $6.02 \times 10^{21} \text{ H}_3\text{O}^+$ ions. Therefore, its H_3O^+ ion concentration is
 - 0.0100 mole per liter.
 - 0.100 mole per liter.

- D.
- 1.00 mole per liter. 6.02×10^{21} mole per liter. 6.02×10^{23} mole per liter. E.

- 15. One liter of an aqueous solution contains $6.02 \times 10^{20} \text{ H}_3\text{O}^+$ ions. Therefore, its H_3O^+ ion concentration is
 - 0.0100 mole per liter. A.
 - 0.00100 mole per liter. B.
 - C.
 - D.
 - 1.00 mole per liter. 6.02×10^{20} mole per liter. 6.02×10^{23} mole per liter. E.
- 16. What is the concentration of H^+ in a 2.5 M HCl solution?
 - A. 0
 - 1.3 M B.
 - C. 2.5 M
 - D. 5.0 M
 - E. 10 .M

17. The OH⁻ concentration in a 1.0×10^{-3} M Ba(OH)₂ solution is

- 0.50×10^{-3} M. A.
- 1.0×10^{-3} M. B.
- 2.0×10^{-3} M. C.
- 1.0×10^{-2} M. D.
- E. 0.020 M.

18. The OH⁻ concentration in a 7.5×10^{-3} M CatOH)₂ solution is

- 7.5×10^{-3} M. A.
- B. 1.5×10^{-2} M.
- 1.3×10^{-12} M. C.
- 1.0×10^{-7} M. D.
- 1.0×10^{-14} M. E.
- 19. The OH⁻ concentration in a 2.5×10^{-3} M Ba(OH)₂ solution is
 - 4.0×10^{-12} M A. 2.5×10^{-3} M Β. 5.0×10^{-3} M C. D. 1.2×10^{-2} M

0.025 M.

- 20. What is the H⁺ ion concentration in a 4.8×10^{-2} M KOH solution?
 - $4.8 \times 10^{-2} \text{ M}$ A.
 - $1.0 \times 10^{-7} \text{ M}$ B.
 - $4.8 \times 10^{-11} \text{ M}$ C.
 - D. 4.8×10^{-12} M E. 2.1×10^{-13} M
- 21. Calculate the H^+ ion concentration in a 8.8×10^{-4} M Ca(OH)₂ solution.
 - 8.8×10^{-4} M A.
 - $1.8 \times 10^{-3} \text{ M}$ B.
 - C. 2.2×10^{-11} M
 - D. 1.1×10^{-11} M
 - $5.7 \times 10^{-12} \,\mathrm{M}$ E.
- 22. What is the OH⁻ ion concentration in a 5.2×10^{-4} M HNO₃ solution
 - $1.9 \times 10^{-11} \text{ M}$ A.
 - $1.0 \times 10^{-7} \text{ M}$ B.
 - C. $5.2 \times 10^{-4} \text{ M}$
 - D. zero
 - $1.0 \times 10^{-4} \text{ M}$ E.
- 23. A 0.10 M HF solution is 8.4% ionized. Calculate the H⁺ ion concentration.
 - 0.84 M A.
 - 0.12 M B.
 - C. 0.10 M
 - D. 0.084 M
 - $8.4 \times 10^{-3} \text{ M}$ E.

24. A 0.14 M HNO₂ solution is 5.7% ionized. Calculate the H^+ ion concentration.

- 8.0×10^{-3} M A. 0.057 M B. 0.13 M C.
- 0.14 M D.
- 0.80 M

- 25. Consider the weak acid CH₃COOH (acetic acid). If a 0.048 M CH₃COOH solution is 5.2% ionized, determine the $[H_3O^+]$ concentration at equilibrium.
 - A. 0.25 M
 - B. 9.2×10^{-3} M
 - C. 0.048 M
 - D. 0.052 M
 - E. 2.5×10^{-3} M
- 26. A 0.10 M NH_3 solution is 1.3% ionized. Calculate the H^+ ion concentration.

 $NH_3 + H_2O \iff NH_4^+ + OH^-$

- A. 1.3×10^{-3} M
- B. 7.7×10^{-2} M
- C. $7.7 \times 10^{-12} \text{ M}$
- D. 0.13 M
- E. 0.10 M
- 27. Calculate the pH of a beer in which the hydrogen ion concentration is 6.3×10^{-5} M.
 - A. 4.2
 - B. 4.8
 - C. 5.63
 - D. 9.8
 - E. 14.0
- 28. Determine the pH of a KOH solution made by mixing 0.251 g KOH with enough water to make 1.00×10^2 mL of solution.
 - A. 1.35
 - B. 2.35
 - C. 7.00
 - D. 11.65
 - E. 12.65
- 29. Calculate the H^+_{+} ion concentration in lemon juice having a pH of 2.4.

- 30. Calculate the pH of a 3.5×10^{-3} M HNO₃ solution.
 - A. -2.46
 - B. 0.54
 - C. 2.46
 - D. 3.00
 - E. 3.46
- 31. What is the pH of 10.0 mL of 0.0020 M HC1?
 - A. 0.70
 - B. 2.70
 - C. 3.70
 - D. 5.70
 - E. 10.0

32. Calculate the pH of a 0.14 M HNO₂ solution that is 5.7% ionized

- A. 0.85
- B. 1.70
- C. 2.10
- D. 11.90
- E. 13.10
- 33. Calculate the pH of a 0.10 M HCN solution that is 0.0070% ionized.
 - A. 1.00
 - B. 0.00070
 - C. 3.15
 - D. 5.15
 - E. 7.00
- 34. What is the pH of a 0.0055 M HA (weak acid) solution that is 8.2% ionized?
 - A. 2.26
 - B. 3.35 C. 4.52
 - D. 8.21
 - E. 10.65
- 35. Calculate the pH of a 6.71×10^{-2} M NaOH solution.
 - A. 12.83
 - B. 2.17
 - C. 11.82
 - D. 6.71
 - E. 1.17

- 36. Calculate the pH of 2.6×10^{-2} M KOH.
 - A. 12.41
 - B. 15.59
 - C. 2.06
 - D. 7.00
 - E. 1.59
- 37. Calculate the pH of a 1.6 M KOH solution.
 - A. 1.60
 - B. -0.20
 - C. 0.20
 - D. 14.20
 - E. 13.80
- 38. What is the pH of a 0.014 M Ca(OH)₂ solution?
 - A. 1.85
 - B. 1.55
 - C. 12.15
 - D. 12.45
 - E. 15.85

39. What is the pH of a 0.001 M $Ca(OH)_2$ solution?

- A. 3.0
- B. 11.0
- C. 2.7
- D. 17.0
- E. 11.3

E.

40. Calculate the hydrogen ion concentration in a solution of fruit juice having a pH of 4.25.

A. 1.0×10^{-14} M B. 5.6×10^{-5} M C. 4.0×10^{-25} M D. 2.5×10^{-4} M

 5.6×10^{-4} M

- 41. The pH of tomato juice is about 4.5. Calculate the concentration of hydrogen ions in this juice.
 - A. $3. \times 10^{-10} \text{ M}$
 - B. $3. \times 10^{-5}$ M
 - C. $5. \times 10^{-4}$ M
 - D. 4.M
 - E. $3. \times 10^{10} \text{ M}$

42. The pH of a certain solution is 2.0. How many $H^+(aq)$ ions are there in 1.0 L of the solution

- A. 0.01 ions
- B. 100 ions
- C. 2 ions
- D. $6. \times 10^{21}$ ions
- E. $6. \times 10^{23}$ ions

43. The pH of a certain solution is 3.0. How many $H^+(aq)$ ions are there in 1.0 L of the solution?

- A. 0.001 ions
- B. 1,000 ions
- C. $6. \times 10^{20}$ ions
- D. 3 ions
- E. $6. \times 10^{26}$ ions
- 44. Calculate the hydrogen ion concentration in a solution having a pH of 4.60.
 - A. 4.0×10^{-3} M
 - B. 4.0×10^{-9} M
 - C. $4.0 \times 10^{-10} \text{ M}$
 - D. 2.5×10^{-5} M
 - E. 2.5×10^{-4} M
- 45. Calculate the hydrogen ion concentration in a solution of beer having a pH of 4.80.

46. The pH of a $Ba(OH)_2$ solution is 10.00. What is the H⁺ ion concentration of this solution?

- A. 4.0×10^{-11} M
- B. 1.6×10^{-10} M
- C. 1.3×10^{-5} M
- D. $1.0 \times 10^{-10} \text{ M}$
- E. 10.M
- 47. Diet cola drinks have a pH of about 3.0, while milk has a pH of about 7.0. How many times greater is the H_3O^+ concentration in diet cola than in milk?
 - A. 2.3 times higher in diet cola than in milk
 - B. 400 times higher in diet cola than in milk
 - C. 0.43 times higher in diet cola than in milk
 - D. 1,000 times higher in diet cola than in milk
 - E. 10,000 times higher in diet cola than in milk
- 48. The pH of coffee is approximately 5.0. How many times greater is the [H₃O] in coffee than in tap water having a pH of 8.0?
 - A. 0.62
 - B. 1.6
 - C. 30
 - D. 1,000
 - E. 1.0×10^4
- 49. The pH of coffee is approximately 5.0. How many times greater is the [H⁺] in coffee than in neutral water?
 - A. 200
 - B. 100
 - C. 5.0
 - D. 1.4
 - E. 0.01
- 50. If the pH of an acid rain storm is approximately 3.0, how many times greater is the $[H^+]$ in the rain than in a cup of coffee having a pH of 5.0?

- 51. What is the pH of a solution prepared by mixing 10.0 mL of a strong acid solution with pH = 2.00 and 10.0 mL of a strong acid solution with pH = 6.00?
 - A. 2.0
 - B. 2.3
 - C. 4.0
 - D. 6.0
 - E. 8.0
- 52. The pOH of a solution is 9.60 Calculate the hydrogen ion concentration in this solution.
 - A. $2.5 \times 10^{-10} \text{ M}$
 - B. 6.0×10^{-9} M
 - C. 4.0×10^{-5} M
 - D. 2.4×10^{-4} M
 - E. 1.0×10^{-14} M
- 53. The pOH of a solution is 10.40 Calculate the hydrogen ion concentration in the solution.
 - A. 4.0×10^{-11} M
 - B. 3.6 M
 - C. $4.0 \times 10^{-10} \text{ M}$
 - D. 2.5×10^{-4} M
 - E. 1.8×10^{-4} M

54. Which solution will have the lowest pHS

- A. 0.10 M HCN
- B. 0.10 M HNO₃
- C. 0.10 M NaCl
- D. 0.10 M H₂CO₃
- E. 0.10 M NaOH

55. Which one of these responses is *true* with regard to a 0.1 M solution of a weak acid HA?

- 56. Acid strength decreases in the series $HI > HSO_4^- > HF > HCN$. Which of these anions is the *weakest* base?
 - A. I⁻
 - B. SO_4^{2-}
 - C. F
 - D. CN
- 57. Acid strength decreases in the series: strongest $HSO_4^- > HF > HCN$. Which of these species is the *weakest* base?
 - A. HF
 - B. SO_4^2
 - C. F
 - D. CN⁻
- 58. Acid strength increases in the series: $HCN < HF < HSO_4^-$. Which of these species is the *strongest* base?
 - A. H_2SO_4
 - B. SO_4^{2-}
 - C. F
 - D. CN
 - E. HSO₄
- 59. Acid strength decreases in the series: $HCl > HSQ_4 > HCN$ Which of these species is the *strongest* base?
 - A. CN
 - B. SO_4^2
 - C. HCN
 - D. Cl⁻
- 60. Acid strength decreases in the series: $HNO_3 > HF > CH_3COOH$. Which of these species is the *strongest* base?
 - A. NO_3^-
 - B. CH₃COO
 - C. F
 - D. CH₃COOH
- 61. Which of these acids is the *strongest*?
 - A. H₂SeO₃
 - $\begin{array}{c} \text{A.} \\ \text{H}_2\text{SeO}_3\\ \text{B.} \\ \text{H}_2\text{TeO}_3 \end{array}$
 - C. H_2SO_3

- 62. Arrange the acids HOCl, HClO₃, and HClO₂ in order of increasing acid strength.
 - A. $HOCl < HClO_3 < HClO_2$
 - B. $HOCl < HClO_2 < HClO_3$
 - C. $HClO_2 < HOCl < HClO_3$
 - D. $HClO_3 < HOCl < HClO_2$
 - E. $HClO_3 < HClO_2 < HOCl$
- 63. Arrange the acids HOBr, HBrO₃, and HBrO₂ in order of increasing acid strength.
 - A. $HOBr < HBrO_3 < HBrO_2$
 - $B. \quad HOBr < HBrO_2 < HBrO_3$
 - C. $HBrO_2 < HOBr < HBrO_3$
 - $D. \quad HBrO_3 < HOBr < HBrO_2$
 - E. $HBrO_3 < HBrO_2 < HOBr$

64. Arrange the acids HBr, H_2 Se, and H_3 As in order of increasing acid strength.

- A. $HBr < H_2Se < H_3As$
- B. $HBr < H_3As < H_2Se$
- C. $H_2Se < H_3As < HBr$
- $D. \quad H_3As < H_2Se < HBr$
- $E. \quad H_3As < HBr < H_2Se$
- 65. Arrange the acids H_2Se , H_2Te , and H_2S in order of increasing acid strength.
 - $A. \quad H_2S < H_2Se < H_2Te$
 - $B. \quad H_2S < H_2Te < H_2Se$
 - C. $H_2Te < H_2S < H_2Se$
 - $D. \quad H_2Se < H_2S < H_2Te$
 - E. $H_2Se < H_2Te < H_2Se$
- 66. When comparing acid strength of binary acids HX, as X varies within a particular group of the periodic table, which *one* of these factors dominates in affecting the acid strength?
 - A. bond strength
 - B. electron withdrawing effects
 - C. percent ionic character of the H-X bond
 - D. solubility

E.

Le Châtelier's principle

- 67. Which one of these net ionic equations represents the reaction of a *strong acid* with a *weak base*?
 - A. $H^+(aq) + OH^-(aq) \rightarrow H_2O(aq)$
 - B. $H^+(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq)$
 - C. $OH^{-}(aq) + HCN(aq) \rightarrow H_2O(aq) + CN^{-}(aq)$
 - D. $HCN(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq) + CN^-(aq)$

- 68. Which one of these net ionic equations represents the reaction of a strong acid with a strong base?
 - A. $H^+(aq) + OH^-(aq) \rightarrow H_2O(aq)$
 - B. $H^+(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq)$
 - C. $OH^{-}(aq) + HCN(aq) \rightarrow H_2O(aq) + CN^{-}(aq)$
 - D. $HCN(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq) + CN^-(aq)$
- 69. Which one of these equations represents the reaction of a weak acid with a weak base?
 - A. $H^+(aq) + OH^-(aq) \rightarrow H_2O(aq)$
 - B. $H^+(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq)$
 - C. $OH^{-}(aq) + HCN(aq) \rightarrow H_2O(aq) + CN^{-}(aq)$
 - D. $HCN(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq) + CN^-(aq)$
- 70. Which one of these equations represents the reaction of a *weak acide* with a *strong base*?
 - A. $H^+(aq) + OH^-(aq) \rightarrow H_2O(aq)$
 - B. $H^+(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq)$
 - C. $OH^{-}(aq) + HCN(aq) \rightarrow H_2O(aq) + CN^{-}(aq)$
 - D. $HCN(aq) + CH_3NH_2(aq) \rightarrow CH_3NH_3^+(aq) + CN^-(aq)$
- 71. Predict the direction in which the equilibrium will he for the reaction

 $H_2CO_3 + F^- \iff HCO_3^- + HF.$

 $K_{a1}(H_2CO_3) = 4.2 \times 10^{-7}; K_a(HF) = 7.1 \times 10^{-7}$

- A. to the right
- B. to the left
- C. in the middle
- 72. Predict the direction in which the equilibrium will lie for the reaction

 $H_3PO_4(aq) + HSO_4(aq) \longrightarrow H_2PO_4(aq) + H_2SO_4(aq).$

 $K_{a1}(H_3PO_4) = 7.5 \times 10^{-3}; K_a(H_2SO_4) = very large$

A. to the rightB. to the leftC. in the middle

73. Predict the direction in which the equilibrium will lie for the reaction

 $H_2SO_3(aq) + HCO_3^-(aq) \iff HSO_3^-(aq) + H_2CO_3(aq).$

 $K_{a1}(H_2SO_3) = 1 \times 10^{-2}; K_{a1}(H_2CO_3) = 4.2 \times 10^{-7}$

- A. to the right
- B. to the left
- C. in the middle

74. Predict the direction in which the equilibrium will lie for the reaction $C_6H_5COO^- + HF \iff C_6H_5COOH + F^-$.

 $K_a(C_6H_5COOH) = 6.5 \times 10^{-5}; K_a(HF) = 7.1 \times 10^{-4}$

- A. to the right
- B. to the left
- C. in the middle
- 75. Predict the direction in which the equilibrium will lie for the reaction

 $H_3PO_4 + NO_3^- \iff H_2PO_4^- + HNO_3$.

 $K_a(H_3PO_4) = 7.5 \times 10^{-3}$

- A. to the right
- B. to the left
- C. in the middle
- 76. Which of the following yields a basic solution when dissolved in water?
 - A. NO₂
 - B. P₄O₁₀
 - C. K_2O
 - D. NaCl
 - E. SO_2
- 77. Which of the following yields an acidic solution when dissolved in water?

E. $Ca(OH)_2$

78. Hard water deposits (calcium carbonate) have built up around your bathroom sink. Which one of these substances would be most effective in dissolving the deposits?

cid.

- A. ammonia
- bleach (sodium hypochlorite) Β.
- lye (sodium hydroxide) С.
- vinegar (acetic acid) D.
- P_4O_{10} is classified as an acidic oxide because it 79.
 - reacts with acids to produce a salt. Α.
 - B. is insoluble in water.
 - reacts with water to produce OH⁻. C.
 - gives a solution of phosphoric acid, H₃PO₄, on dissolving in water. D.
 - can act as a Lewis base by donating electron pairs. E.
- 80. In the reaction $CaO(s) + SO_2(g) \iff CaSO_3(s)$,
 - O^{2-} acts as a Lewis base, and SO_2 acts as a Lewis acid. A.
 - Ca^{2+} acts as a Lewis base, and SO_2^{-2+} acts as a Lewis SO_4^{-2-} acts as a Lewis base, and SO_2 acts as a Lewis Β.
 - C.
 - D.
 - SO_2 acts as a Lewis base, and O^{2-} acts as a Lewis acid. SO_2 acts as a Lewis base, and Ca^{2+} acts as a Lewis acid. E.
- 81. Which of these species will act as a Lewis acid
 - NH₃ A.
 - Β. NH₄
 - C. H_2O
 - D. BF₃
 - E. F
- Lewis acid, but not a Brønsted acid? 82. Which of these species is
 - HCN A.
 - CO_3 Β. C. OH
 - D C Al
- Find the pH of a 0.135 M aqueous solution of periodic acid (HIO₄), for which $K_a = 2.3 \times 10^{-2}$. 83.
 - A. 1.25

E.

- Β. 3.28
- C. 1.17
- D. 1.34
- E. 1.64

- 84. Find the pH of a 0.183 M aqueous solution of hypobromous acid (HOBr), for which $K_a = 2.06 \times 10^{-9}$.
 - A. 4.72
 - B. 8.69
 - C. 3.97
 - D. 4.34
 - E. 9.28

85. Find the pH of a 0.200 M aqueous solution of dichloroacetic acid, for which $K_a = 3.32$

- A. 0.75
- B. 2.71
- C. 1.05
- D. 2.35
- E. 1.18
- 86. Hydrosulfuric acid is a diprotic acid, for which $K_{a1} = 5.7 \times 10^8$ and $K_{a2} = 1 \times 10^{-19}$. Determine the concentration of sulfide ion in a 0.10 M hydrosulfuric solution.
 - A. 0.10 M
 - B. 7.5×10^{-5} M
 - C. 5.7×10^{-9} M
 - D. 1×10^{-19} M
 - E. 1×10^{-20} M
- 87. Calculate the concentration of oxalate ion $(C_2O_4^{-2})$ in a 0.175 M solution of oxalic acid $(C_2H_2O_4)$. [For oxalic acid, $K_{a1} = 6.5 \times 10^{-2}$, $K_{a2} = 6.1 \times 10^{-2}$]
 - A. 0.11 M
 - B. 6.1×10^{-5} M
 - C. 4.0×10^{-6} M
 - D. 0.0791 M
 - E. 0.175 M
- 88. Calculate the concentration of chromate ion $(\text{CrO}_4^{2^-})$ in a 0.450 M solution of chromic acid (H_2CrO_4) . [For chromic acid, $K_{a1} = 0.18$, $K_{a2} = 3.2 \times 10^{-7}$.]

- 89. Calculate the concentration of malonate ion $(C_3H_2O_4^{2^-})$ in a 0.200 M solution of malonic acid $(C_3H_4O_4)$. [For malonic acid, $K_{a1} = 1.4 \times 10^{-3}$, $K_{a2} = 2.0 \times 10^{-6}$.]
 - A. 2.8×10^{-4} M
 - B. 0.016 M
 - C. 1.8×10^{-4} M
 - D. 1.4×10^{-3} M
 - E. 2.0×10^{-6} M
- 90. For H₃PO₄, $K_{a1} = 7.3 \times 10^{-3}$, $K_{a2} = 6.2 \times 10^{-6}$, and $K_{a3} = 4.8 \times 10^{-13}$. An aqueous solution of NaH₂PO₄ therefore would be
 - A. neutral.
 - B. basic.
 - C. acidic.
- 91. For H₃PO₄, $K_{a1} = 7.3 \times 10^{-3}$, $K_{a2} = 6.2 \times 10^{-6}$, and $K_{a3} = 4.8 \times 10^{-13}$. An aqueous solution of Na₃PO₄ therefore would be
 - A. neutral.
 - B. basic.
 - C. acidic.
- 92. An aqueous solution of KCl would be
 - A. neutral.
 - B. basic.
 - C. acidic.
- 93. Which one of these salts will form a *neutral* solution on dissolving in water?
 - A. NaCl
 - B. KNO₂
 - C. NaCN
 - D. NH₄NO₃
 - E. FeCl₃
- 94. Which one of these salts will form a basic solution on dissolving in water?
 - A. NaCl
 - B. KCN
 - C. NaNO₃
 - D. NH₄NO₃
 - E. FeCl₃

- 95. In 0.10 M KCN, the chemical species with the highest concentration (except H₂O) is
 - A. Na⁺.
 - B. CN^{-} .
 - $C. \quad H_3O^+(or \ H^+).$
 - D. OH-.
 - E. K^+ .

96. What is the pH of a 0.20 M solution of NH₄Cl? [K_b(NH₃) = 1.8×10^{-5}]

- A. 3.74
- B. 4.98
- C. 6.53
- D. 9.02
- E. 10.25

97. Calculate the pH of a 0.021 M NaCN solution. $[K_a(HCN) = 4.9 \times 10^{-10}]$

- A. 1.68
- B. 3.18
- C. 5.49
- D. 7.00
- E. 10.82

98. Consider the weak bases below and their Ke values

C_6H_7O	$K_b = 1.3 \times 10^{-10}$
$C_2H_5NH_2$	$K_b = 5.6 \times 10^{-4}$
C_5H_5N	$K_b = 1.7 \times 10^{-9}$

Arrange the conjugate acids of these weak bases in order of *increasing* acid strength.

- A. $C_5H_5NH^+ < C_6H_7OH < C_2H_5NH^+$
- B. $C_6H_7OH < C_5H_5NH < C_2H_5NH$
- C. $C_5H_5NH^+ < C_2H_5NH_3 < C_6H_7OH$
- D. $C_6H_7OH < C_2H_5NH_3^+ < C_5H_5NH^+$
- E. $C_2H_5NH_3^+ < C_5H_5NH^+ < C_6H_7OH$

99. Which response gives the products of hydrolysis of NH_4Cl ?

A NH₄ + HCl

- B. $NH_3 + OH^- + HCl$
- C. $MH_3 + H^+$
- D. $NH_4OH + HCl$
- E. No hydrolysis occurs.

100. Which response gives the products of hydrolysis of KF?

- A. KOH + HF
- B. $OH^{-} + HF$
- C. $KOH + H^+ + F^-$
- D. KH + F + OH
- E. No hydrolysis occurs.

101. Which one of these salts will form a basic solution upon dissolving in water?

- A. NaCl
- B. NaNO₂
- C. NH₄NO₃
- D. KBr
- E. AlCl₃

102. Which one of these salts will form a *basic* solution upon dissolving in water?

- A. NaI
- B. NaF
- C. NH₄NO₃
- D. LiBr
- E. $Cr(NO_3)_3$

103. Which one of these salts will form an acidic solution upon dissolving in water?

- A. LiBr
- B. NaF
- C. NH₄Br
- D. KOH
- E. NaCN

104. Which one of the following salts will form an *acidic* solution on dissolving in water?

- A. LiBr
- B. NaF
- C. KOH
- D. FeCl₃ E. NaCN

- 105. What mass of ammonium chloride must be added to 250. mL of water to give a solution with pH = 4.85? $[K_b(NH_3) = 1.8 \times 10^{-5}]$
 - A. 4.7 g
 - B. 75 g
 - C. 2.3×10^{-3} g
 - D. 19 g
 - E. 10. g
- 106. What mass of sodium nitrite must be added to 350. mL of water to give a solution with pH = 84 $[K_a(HNO_2) = 5.6 \times 10^{-4}]$
 - A. 68 g
 - B. 1.7×10^{-4} g
 - C. 0.039 g
 - D. 8.3 g
 - E. 24 g
- 107. What mass of potassium hypochlorite must be added to 450. mL of water to give a solution with pH = 10.20? [K_a(HClO) = 4.0×10^{-8}]
 - A. 20. g
 - B. 0.032 g
 - C. 4.1 g
 - D. 2.4 g
 - E. 9.1 g
- 108. What is the pH of a solution prepared by mixing 100. mL of 0.0500 M HCl with 300. mL of 0.500 M HF? $[K_a(HF) = 7.1 \times 10^{-4}]$
 - A. 1.47
 - B. 1.90
 - C. 1.30
 - D. 1.63
 - E. 2.82
- 109. What is the pH of a solution prepared by mixing 50.0 mL of 0.300 M HCl with 450.0 mL of 0.400 M HIO_3 ? [K_a(HIO₃) = 1.6×10^{-1}]
 - A. 1.52 B. 0.80
 - C. 0.72
 - D. 0.89
 - E. 0.66

110. The equilibrium constant for the reaction

 $C_6H_5COOH(aq) + CH_3COO^{-}(aq) \iff C_6H_5COO^{-}(aq) + CH_3COOH(aq)$ is 3.6 at 25°C. If K_a for CH₃COOH is 1.8×10^{-5} , what is the acid dissociation constant for C_6H_5COOH ?

- A. 5.0×10^{-6}
- B. 6.5×10^{-5}
- C. 2.3×10^{-4}
- D. 8.3×10^{-5}
- E. 5.6×10^{-6}
- 111. The equilibrium constant for the reaction

 $C_7H_{15}COOH(aq) + HCOO^{-}(aq) \iff C_7H_{15}COO^{-}(aq) + HCOOH(aq)$ is 7.23×10^{-2} at 25°C. If K_a for formic acid (HCOOH) is 1.77×10^{-4} , what is the acid dissociation constant for $C_7H_{15}COOH$?

- A. 2.45×10^{-3}
- B. 4.08×10^{-2}
- C. 7.81×10^{-4}
- D. 1.00×10^{-4}
- E. 1.28×10^{-5}
- 112. For maleic acid, HOOCCH=CHCOOH, $K_{a1} = 1.42 \times 10^{-2}$ and $K_{a2} = 8.57 \times 10^{-7}$. What is the concentration of maleate ion (⁻OOCCH=CHCOO⁻) in a 0.150 M aqueous solution of maleic acid?
 - A. 8.57×10^{-7} M
 - B. 2.79×10^{-6} M
 - C. 1.86×10^{-5} M
 - D. 4.60×10^{-2} M
 - E. 1.19×10^{-1} M
- 113. Aspartic acid (C₄H₇NO₄), one of the 20 essential amino acids, has two ionizable hydrogens. At 25°C, $K_{a1} = 1.38 \times 10^{-4}$ and $K_{a2} = 1.51 \times 10^{-10}$. What is the concentration of doubly ionized aspartate ions in a 0.125 M aqueous solution of aspartie acid?

- 114. What mass of sodium cyanide must be added to 250. mL of water at 25°C in order to obtain a solution having a pH of 10.50? ($K_a(HCN) = 4.9 \times 10^{-10}$)
 - A. 200 g
 - B. 0.035 g
 - C. 0.066 g
 - D. 1.1 g
 - E. 0.26 g
- 115. What mass of sodium formate (HCOONa) must be added to 350. mL of water at 25°C in order to obtain a solution having a pH of 8.50? (K_a (HCOOH) = 1.77 ×10⁻⁴)
 - A. 0.23 g
 - B. 4.3 g
 - C. 35 g
 - D. 12 g
 - E. 130 g
- 116. A tablet of a common over-the-counter drug contains 200. mg of caffeine ($C_8H_{10}N_4O_2$). What is the pH of the solution resulting from the dissolution of two of these tablets in 225. mL of water at 25°C? (For caffeine, $K_b = 4.1 \times 10^{-4}$.)
 - A. 2.76
 - B. 7.67
 - C. 10.96
 - D. 6.33
 - E. 11.24
- 117. Morphine, $C_{17}H_{19}NO_3$, is often used to control severe post-operative pain. What is the pH of the solution made by dissolving 25.0 mg of morphine in 100. mL of water at 25°C? (For morphine, $K_b = 1.62 \times 10^{-6}$.)
 - A. 9.57
 - B. 9.08
 - C. 3.79
 - D. 9.87
 - E. 4.43

118. Which of these lists of molecules is arranged in order of *increasing* acid strength?

 $\mathbf{A} = \mathbf{H}_2 \mathbf{S} < \mathbf{H}_2 \mathbf{O} < \mathbf{H}_2 \mathbf{S} \mathbf{e}$

- $\mathbf{B}. \quad \mathbf{H}_2\mathbf{O} < \mathbf{H}_2\mathbf{S} < \mathbf{H}_2\mathbf{S}\mathbf{e}$
- $C. \quad H_2Se < H_2O < H_2S$
- D. $H_2S < H_2Se < H_2O$
- $E. \quad H_2 O < H_2 Se < H_2 S$

119. Which of these lists of molecules is arranged in order of *increasing* acid strength: HI, H₂Te, H₃Sb.

- $A. \quad H_2Te < H_3Sb < HI$
- $B. \quad HI < H_2Te < H_3Sb$
- C. $HI < H_3Sb < H_2Te$
- D. $H_3Sb < H_2Te < HI$
- $E. \quad H_3Sb < HI < H_2Te$

120. Identify the conjugate acid-base pairs in the reaction

 $HSO_4^- + HF \iff H_2SO_4 + F^-$

One conjugate acid-base pair is _____; the other acid-base pair is

- 121. Which of these acids is stronger, H₃PO₄ or H₃AsO₄?
- 122. Which of these acids is stronger, HyAsO, or HyAsO,

123. Which of these acids is stronger, H_2SO_4 or HSO_4 ?

124. In comparing three solutions with pH's of 2.0, 4.8, and 5.2, which is most acidic?

125. Al(OH)₃ is an amphoteric hydroxide. Write a balanced ionic equation to show its reaction with HNO₃.

126. Al(OH)₃ is an amphoteric hydroxide. Write a balanced ionic equation to show its reaction with KOH.

- 127. Write the chemical formula for hydrochloric acid.
- 128. Write the chemical formula for nitric acid.
- 129. Write the chemical formula for sulfuric acid.

130. Write the chemical formula for phosphoric acid.

- 131. Write the chemical formula for perchloric acid.
- 132. Write the formula for the conjugate base of $H_2PO_4^-$.
- 133. Calculate the pH of a solution containing 0.20 g of NaOH in 2,000 mL of solution
- 134. Calculate the pOH of a solution containing 0.25 g of HCl in 800. mL of solution.
- 135. Calculate the H^+ ion concentration in a solution with a pH of 3.85.

136. If the pH of stomach acid is 1.0, what is the hydroxide ion concentration in this solution?

137. If the pH of liquid bleach is 12.0, what is the hydroxide ion concentration in this solution?

138. If the pH of pure water is 7.0, what is the hydroxide ion concentration in pure water?

- 139. If the pH of tomato juice is 4.0, what is the hydroxide ion concentration in this solution?
- 140. If the pH of seawater is 8.0, what is the hydroxide ion concentration in seawater?
- 141. The pH of a sample of river water is 6.0. A sample of effluent from a food processing plant has a pH of 4.0. What is the ratio of hydronium ion concentration in the effluent to the ion concentration in the river?
- 142. What concentration of potassium hydroxide will result from the reaction of 0.170 g of potassium with 100. ml of water?

- 143. What volume of hydrogen, at STP, will be formed by the reaction of 0.170 g of potassium with 100. ml of water?
- 144. Lime is used in farming to reduce the acidity of the soil. The chemical name for lime is calcium oxide. When water in the soil reacts with lime, what base is formed?
- 145. The compound CH₃NH₂ reacts with water to form CH₃NH₃⁺ and OH⁺. What role does CH₃NH₂ play in this reaction?
- 146. HCN is classified as a weak acid in water. What does this classification mean?
- 147. A sample of rainwater has a pH of 3.5. The concentration of what ion is approximately 3×10^{-4} M in this rain sample?

148. The pH of rain collected on a remote island in the Pacific is assumed to be unaffected by human pollution. The pH of the rainwater on this island will be ______.

149. An unknown substance was added to a solution and the pH decreases. What type of substance was added?

- 150. The pH of a 0.02 M solution of an unknown weak base is 8.1. What is the pK_b of the unknown base?
- 151. A solution containing NH₃(aq) and NH₄Cl(aq) has a pH of 9.5. What is the [NH₃]/[NH₄⁺] ratio in this solution? (For ammonia, $K_b = 1.8 \times 10^{-5}$.)
- 152. When 2.0×10^{-2} mole of nicotinic acid (a monoprotic acid) is dissolved in 350. mL of water, the pH is 3.05. What is the K_a of nicotinic acid?
- 153. A 8.0 M solution of formic acid (HCOOH) is 0.47% ionized. What is the K_a of formic acid?

154. The pH of a 0.6 M solution of a weak acid is 4.0. What percent of the acid has ionized?

155. A solution with a pH of 8 has a hydrogen ion concentration [H⁺] that is 30 times greater than that of a solution of pH 11.

True False

156. A solution of HNO₃ would change the color of litmus from red to blue.

True False

157. In the reaction $HNO_3 + NH_3 \iff NH_4^+ + NO_3^-$, NH_4^+ and NH_3 are a conjugate acid-base pair

True False

158. Of the two acids HBr and H_2Se , H_2Se is the stronger acid.

True False

159. In the reaction $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$, Ag^+ acts as a Lewis ac

True False

160. In aqueous solutions at 25°C, the sum of the ion concentrations $(H^+] + [OH^-])$ equals 1×10^{-14} .

True False

Chapter 15 Acids and Bases Key

1.C 2.C 3.D 4.A 5.D 6.E 7.B 8.C 9.A 10.B 11.C 12.B 13.B 14.A 15.B 16.C 17.C 18.B 19.C 20.E 21.E 22.A 23.E 24.A 25.E 26.C 27.A 28.E

29.D			
30.C			
31.B			
32.C			
33.D			
34.B			
35.A			
36.A			
37.D			
38.D			
39.E			
40.B			
41.B			
42.D			
43.C			
44.D			
45.B			
46.D			
47.E			
48.D			
49.B			
50.B			
51.B			
52.C			
53.D			
54.B			
55.D			
56.A			
57.B			
58.D			
59.A			
60.B			

61.C

62.B			
63.B			
64.D			
65.A			
66.A			
67.B			
68.A			
69.D			
70.C			
71.B			
72.B			
73.A			
74.A			
75.B			
76.C			
77.A			
78.D			
79.D			
80.A			
81.D			
82.E			
83.D			
84.A			
85.E			
86.D			
87.B			
88.A			
89.E			
90.C			
91.B			
92.A			
93.A			
94.B			

95.8 96.8 97.8 96.7 96.7 96.7 100.8 101.8 102.8 103.6 104.0 104.0 105.4 105.4 105.4 105.7	
96.B 97.E 98.F 99.C 100.B 101.B 102.B 103.C 104.D 105.A 104.D 105.A 106.D 107.C 108.D 108.D 109.D 101.B 102.B 103.C 104.D 105.A 105.D 106.D 107.C 108.D 109.D 101.B 111.E 112.A 113.D 114.C 115.B 116.F 117.A 118.B 119.D 12.H.PO4. 12.H.PO4. 12.H.PO4. 12.H.SO4. 12.H.PO4. 12.H.PO1	95.E
97.E 98.E 99.C 100.B 101.B 102.B 103.C 104.D 105.A 105.A 106.D 107.C 108.D 109.D 111.E 112.A 113.D 114.C 115.B 116.E 117.A 118.B 119.D 12.L, HF, F, H ₂ O ₄ -HSO ₄ ⁻ 12.L, HP4, 12.L, HP4, 12.L, HP4, 12.L, HP4, 12.L, HP4, 12.L, HP4, + SOH=JO 12.A(H), +, SHNO, → A((NO)), + SHQO 12.A(H), +, SHNO, → A((NO)), + SHQO	96.B
98.E 99.C 100.B 101.B 102.B 103.C 104.D 104.D 105.A 105.A 106.D 107.C 108.D 108.D 109.D 109.D 109.D 101.B 111.E 112.A 113.D 114.C 115.B 115.C 11	97.E
99C 100B 101B 102B 103C 104D 105A 105A 105D 107C 108D 107C 108D 107D 108D 101B 111E 112A 113D 114C 113D 114C 115B 116E 117A 118B 119D 120.HF-F; H_SO ₄ -HSO ₄ ` 121.HpO4 122.H_ASO ₄ 123.H_SO ₄ 124.Haso	98.E
100.B101.B102.B103.C104.D105.A105.A106.D107.C108.D109.D110.B111.E112.A113.D114.C115.B116.E117.A118.B119.D12.A,A13.B13.B13.B13.C14.C15.B16.E17.A18.B19.D12.H_PO4<	99.C
101.B 102.B 103.C 104.D 105.A 106.D 107.C 108.D 109.D 109.D 110.B 111.E 112.A 113.D 114.C 115.B 116.E 117.A 116.E 117.A 116.E 117.A 118.B 116.E 117.A 118.B 119.D 120.HF-F; H ₂ SQ ₄ -HSQ ₄ ' 121.H ₂ PQ ₄ 122.H ₃ SQ ₄ 123.H ₃ SQ ₄ 123.H ₃ SQ ₄ 124.The solution with pH = 2.0 125.Al(OH) ₃ + SHNO ₃ → Al(NO ₃) ₃ + SH ₂ O	100.B
102.B 103.C 104.D 105.A 105.A 106.D 107.C 108.D 109.D 109.B 110.B 111.E 112.A 113.D 114.C 115.B 114.C 115.B 116.E 117.A 118.B 119.D 120.HF-F'; H ₂ SO ₄ -HSO ₄ ' 121.H ₂ PO ₄ 122.H ₃ SO ₄ 123.H ₃ SO ₄ 123.H ₃ SO ₄ 123.H ₃ SO ₄ 123.H ₃ SO ₄ 124.The solution with pH = 2.0 125.Al(OH) ₃ + SHNO ₃ \rightarrow Al(NO ₃) ₃ + 3H ₂ O	101.B
103.C 104.D 105.A 105.A 106.D 107.C 108.D 109.D 110.B 111.E 112.A 113.D 114.C 115.B 114.C 115.B 116.E 117.A 118.B 116.E 117.A 118.B 119.D 120.HF-F; H ₂ SO ₄ -HSO ₄ ' 121.H ₂ PO ₄ 122.H ₃ ASO ₄ 123.H ₃ SO ₄ 124.The solution with pH = 2.0 125.A(ICH) ₂ + 3HNO ₃ → A(INO 4) ₂ + 3H ₂ O	102.B
104.D 105.A 106.D 107.C 108.D 109.D 109.D 110.B 111.E 112.A 112.A 113.D 114.C 113.D 114.C 115.B 114.C 115.B 116.E 117.A 118.B 116.E 117.A 118.B 119.D $120.HF-F; H_SO_4-HSO_4$ $121.H_3PO_4$ $122.H_3AO_4$ $122.H_3AO_4$ $122.H_3AO_4$ $123.H_3SO_4$ 124.Hre solution with pH = 2.0 124.Hre solution with pH = 2.0 $125.Al(CH)_3 + Al(NO_3)_3 + 3H_2O$ $126.Al(CH)_3 + CH - K[Al(CH)_4]$	103.C
105.A 106.D 107.C 108.D 109.D 110.B 111.E 112.A 113.D 114.C 115.B 116.E 117.A 116.E 117.A 118.B 119.D 120.HF-F; H ₂ SO ₄ -HSO ₄ 121.H ₂ PO ₄ 122.H ₃ ASO ₄ 122.H ₃ ASO ₄ 123.H ₃ SO ₄ 123.H ₃ SO ₄ 124.The solution with pH = 2.0	104.D
106D 107C 108D 108D 109D 109D 110B 110B 111E 112A 112A 112A 113D 114C 113D 114C 115B 116E 117A 116E 117A 118B 119D $120. HF-F; H_2SO_4-HSO_4$ $121. H_3PO_4$ $122. H_3ASO_4$ $121. H_3PO_4$ $122. H_3ASO_4$ $123. H_3SO_4$ $123. H_3SO_4$ $123. H_3SO_4$ 124. The solution with pH = 2.0 $125. Al(OH)_5 + 3HNO_5 \rightarrow Al(NO_5)_5 + 3H_2O$ $126. Al(OH)_5 + 5HNO_5 \rightarrow Al(NO_5)_5 + 3H_2O$	105.A
$107.C$ $108.D$ $109.D$ $109.D$ $110.B$ $111.E$ $112.A$ $113.D$ $114.C$ $113.D$ $114.C$ $115.B$ $116.E$ $117.A$ $118.B$ $119.D$ $120. HF-F; H_2SO_4-HSO_4^-$ $121.H_3PO_4$ $122.H_3ASO_4$ $122.H_3ASO_4$ $123.H_2SO_4$ $123.H_2SO$	106.D
$108.D$ $109.D$ $110.B$ $111.E$ $112.A$ $113.D$ $114.C$ $115.B$ $116.E$ $117.A$ $118.B$ $119.D$ $120. HF-F; H_2SO_4 HSO_4$ $121.H_3PO_4$ $121.H_3PO_4$ $122.H_3ASO_4$ $123.H_2SO_4$ $123.H_2SO_4$ $124.The solution with pH = 2.0$ $125.Al(OH)_3 + 3HNO_3 \rightarrow Al(NO_3)_3 + 3H_2O$ $126.Al(OH)_3 + KOH \rightarrow K[Al(OH)_4]$	107.C
$10.D$ $110.B$ $111.E$ $112.A$ $113.D$ $114.C$ $113.B$ $116.E$ $117.A$ $118.B$ $119.D$ $120. HF-F; H_{2}SO_{4}-HSO_{4}$ $121.H_{3}PO_{4}$ $122.H_{3}ASO_{4}$ $122.H_{3}ASO_{4}$ $123.H_{2}SO_{4}$ $123.H_{2}SO_{4}$ $124.The solution with pH = 2.0$ $125.AI(OH)_{3} + 3HNO_{3} \rightarrow AI(NO_{3})_{3} + 3H_{2}O$	108.D
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	109.D
111.E 112.A 113.D 114.C 115.B 116.E 117.A 118.B 119.D 120. HF-F; H_2SO_4 -HSO_4 ⁻ 121.H ₃ PO ₄ 122.H ₃ ASO ₄ 122.H ₃ ASO ₄ 123.H ₂ SO ₄ 123.H ₂ SO ₄ 123.H ₂ SO ₄ 125.Al(OH) ₃ + 3HNO ₃ \rightarrow Al(NO ₃) ₃ + 3H ₂ O 126.Al(OH) ₃ + KOH \rightarrow K[Al(OH) ₄]	110.B
112.A 113.D 114.C 115.B 116.E 117.A 118.B 119.D 120. HF-F; $H_{2}SO_{4}$ -HSO $_{4}$. 121. $H_{3}PO_{4}$ 122. $H_{3}ASO_{4}$ 123. $H_{2}SO_{4}$ 123. $H_{2}SO_{4}$ 123. $H_{2}SO_{4}$ 124.The solution with pH = 2.0 125. $AI(OH)_{3} + 3HNO_{3} \rightarrow AI(NO_{3})_{3} + 3H_{2}O$ 126. $AI(OH)_{3} + KOH \rightarrow K[AI(OH)_{4}]$	111.E
113.D 114.C 115.B 116.E 117.A 118.B 119.D 120. HF-F'; H ₂ SO ₄ -HSO ₄ ' 121.H ₃ PO ₄ 122.H ₃ ASO ₄ 122.H ₃ ASO ₄ 123.H ₂ SO ₄ 124.The solution with pH = 2.0 125.Al(OH) ₃ + 3HNO ₃ \rightarrow Al(NO ₃) ₃ + 3H ₂ O 126.Al(OH) ₃ + KOH \rightarrow K[Al(OH) ₄]	112.A
114.C 115.B 116.E 117.A 118.B 119.D 120. HF-F'; H ₂ SO ₄ -HSO ₄ ' 121.H ₃ PO ₄ 122.H ₃ AsO ₄ 122.H ₃ AsO ₄ 123.H ₂ SO ₄ 124.The solution with pH = 2.0 125.Al(OH) ₃ + 3HNO ₃ \rightarrow Al(NO ₃) ₃ + 3H ₂ O 126.Al(OH) ₃ + KOH \rightarrow K[Al(OH) ₄]	113.D
115.B 116.E 117.A 118.B 119.D 120. HF-F; H_2SO_4 -HSO_4 121.H_3PO_4 122.H_3ASO_4 123.H_2SO_4 123.H_2SO_4 124.The solution with $pH = 2.0$ 125.Al(OH) ₃ + 3HNO ₃ \rightarrow Al(NO_3) ₃ + 3H ₂ O	114.C
116.E 117.A 118.B 119.D 120. HF-F'; H ₂ SO ₄ -HSO ₄ ` 121.H ₃ PO ₄ 122.H ₃ AsO ₄ 122.H ₃ AsO ₄ 123.H ₂ SO ₄ 124.The solution with $pH = 2.0$ 125.Al(OH) ₃ + 3HNO ₃ \rightarrow Al(NO ₃) ₃ + 3H ₂ O 126.Al(OH) ₃ + KOH \rightarrow K[Al(OH) ₄]	115.B
117.A 118.B 119.D 120. HF-F'; H_2SO_4-HSO_4` 121.H_3PO_4 122.H_3AsO_4 123.H_2SO_4 124.The solution with $pH = 2.0$ 125.Al(OH)_3 + 3HNO_3 \rightarrow Al(NO_3)_3 + 3H_2O 126.Al(OH)_3 + KOH \rightarrow K[Al(OH)_4]	116.E
118.B 119.D 120. HF-F'; H_2SO_4 -HSO_4 ⁻ 121.H_3PO_4 122.H_3ASO_4 123.H_2SO_4 124.The solution with pH = 2.0 125.Al(OH)_3 + 3HNO_3 \rightarrow Al(NO_3)_3 + 3H_2O 126.Al(OH)_3 + KOH \rightarrow K[Al(OH)_4]	117.A
119.D 120. HF-F; H_2SO_4 -HSO_4 121. H_3PO_4 122. H_3AsO_4 123. H_2SO_4 124. The solution with $pH = 2.0$ 125. $Al(OH)_3 + 3HNO_3 \rightarrow Al(NO_3)_3 + 3H_2O$ 126. $Al(OH)_3 + KOH \rightarrow K[Al(OH)_4]$	118.B
$120. \text{ HF-F}; \text{H}_2\text{SO}_4\text{-}\text{HSO}_4^-$ $121.\text{H}_3\text{PO}_4$ $122.\text{H}_3\text{AsO}_4$ $123.\text{H}_2\text{SO}_4$ $124. \text{The solution with pH} = 2.0$ $125. \text{Al}(\text{OH})_3 + 3\text{HNO}_3 \rightarrow \text{Al}(\text{NO}_3)_3 + 3\text{H}_2\text{O}$ $126. \text{Al}(\text{OH})_3 + \text{KOH} \rightarrow \text{K}[\text{Al}(\text{OH})_4]$	119.D
$121.H_{3}PO_{4}$ $122.H_{3}AsO_{4}$ $123.H_{2}SO_{4}$ $124.The solution with pH = 2.0$ $125.Al(OH)_{3} + 3HNO_{3} \rightarrow Al(NO_{3})_{3} + 3H_{2}O$ $126.Al(OH)_{3} + KOH \rightarrow K[Al(OH)_{4}]$	120. HF-F ⁻ ; H_2SO_4 -HSO ₄ ⁻
122.H ₃ AsO ₄ 123.H ₂ SO ₄ 124.The solution with pH = 2.0 125.Al(OH) ₃ + 3HNO ₃ \rightarrow Al(NO ₃) ₃ + 3H ₂ O 126.Al(OH) ₃ + KOH \rightarrow K[Al(OH) ₄]	121.H ₃ PO ₄
123.H ₂ SO ₄ 124.The solution with pH = 2.0 125.Al(OH) ₃ + 3HNO ₃ \rightarrow Al(NO ₃) ₃ + 3H ₂ O 126.Al(OH) ₃ + KOH \rightarrow K[Al(OH) ₄]	122.H ₃ AsO ₄
124.The solution with pH = 2.0 125.Al(OH) ₃ + 3HNO ₃ \rightarrow Al(NO ₃) ₃ + 3H ₂ O 126.Al(OH) ₃ + KOH \rightarrow K[Al(OH) ₄]	123.H ₂ SO ₄
$125.Al(OH)_3 + 3HNO_3 \rightarrow Al(NO_3)_3 + 3H_2O$ $126.Al(OH)_3 + KOH \rightarrow K[Al(OH)_4]$	124. The solution with $pH = 2.0$
$126.\mathrm{Al}(\mathrm{OH})_3 + \mathrm{KOH} \rightarrow \mathrm{K}[\mathrm{Al}(\mathrm{OH})_4]$	$125.\mathrm{Al}(\mathrm{OH})_3 + 3\mathrm{HNO}_3 \rightarrow \mathrm{Al}(\mathrm{NO}_3)_3 + 3\mathrm{H}_2\mathrm{O}$
	$126.\mathrm{Al}(\mathrm{OH})_3 + \mathrm{KOH} \rightarrow \mathrm{K}[\mathrm{Al}(\mathrm{OH})_4]$

127.HCl

128.HNO₃

129.H₂SO₄

130.H₃PO₄

131.HClO₄

132.HPO4²⁻

133.11.40

134.11.93

 $135.1.4 \times 10^{-4} \text{ M}$

 $136.1 \times 10^{-13} \text{ M}$

 $137.1 \times 10^{-2} \text{ M}$

 138.1×10^{-7} M

 $139.1\times10^{\text{-10}}\,\text{M}$

 $140.1 \times 10^{-6} \text{ M}$

141. The hydronium ion concentration in the effluent is 100 times greater than the hydronium ion concentration in the river.

 $142.4.35 \times 10^{-2} \text{ M}$

 $143.4.87 \times 10^{-2} \, L$

144.Ca(OH)2

145.CH₃NH₂ acts as a base.

146.A relatively small fraction of the acid undergoes ionization.

 $147.H_{3}O^{+}$

148.less than 7

149.an acid

150.10.1

151.1.8

 $152.1.4 \times 10^{-5}$

 $153.1.77 \times 10^{-4}$

154.0.02 %

155.FALSE

156.FALSE

157.TRUE

158.FALSE

159.TRUE

160.FALSE