

TOPOLOGY AND ITS APPLICATIONS

Topology and its Applications 123 (2002) 537-545

www.elsevier.com/locate/topol

κ -normality and products of ordinals

Lutfi Kalantan, Paul J. Szeptycki*,

York University, Atkinson Faculty, Atkinson 536, Toronto, ON, Canada M3J 1P3
Received 14 September 2000; received in revised form 30 April 2001

Abstract

A regular topological space is called κ -normal if any two disjoint regular closed subsets can be separated. In this paper we will show that any product of ordinals is κ -normal. In addition a generalization of a theorem of van Douwen and Vaughan will be proven and used to give an alternate proof that the product of any countable family of ordinals is κ -normal. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 54B10; 54D15; 54D20; 03E10; 03E75

Keywords: Regular open; Ordinals; Normality; Countable paracompactness; Elementary submodels; Products

E.V. Shchepin introduced, in [10], the class of κ -normal (also called mildly normal) topological spaces. A regular topological space is called κ -normal if any two disjoint regular closed subsets can be separated. Recall that a subset A of a topological space X is said to be regular closed (also called κ -closed or canonically closed) if $A = \overline{\inf A}$. A subset A is said to be regular open (or κ -open or canonically open) if $A = \overline{\inf A}$. Two subsets A and B of a space X are said to be separated if there exist two open disjoint subsets A and A of A such that $A \subseteq A$ and A subspace A of A subspace A of A such that A is normal on A of A subspace of A, then A is normal on A of A such that A is normal on A of closed disjoint subsets of A such that A is normal on A or A or A such that A is normal on A or A or A such that A is normal on A or A or A or A or A such that A is normal on A or A

In [6], the class of κ -normal spaces was further studied. It was shown that most pathologies present for normal spaces also appear for κ -normality. Also, many standard

E-mail addresses: lkalantan@hotmail.com (L. Kalantan), szeptyck@yorku.ca (P.J. Szeptycki).

0166-8641/01/\$ – see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: \$0166-8641(01)00220-6

^{*} Corresponding author.

non-normal spaces are κ -normal. For example, the square of the Sorgenfrey line, ω^{ω_1} , $\omega_1 \times (\omega_1 + 1)$, and the Tychonoff plank are κ -normal but not normal.

In this paper we show that any product of ordinals is κ -normal. The first section contains a proof of the full result. An alternate proof for the countable case will be given in the second section. In fact, we prove a stronger result for the countable case, that the product of any countable family of ordinals is densely normal. Towards proving this result, an extension of a theorem of van Douwen and Vaughan will be established.

The following notation will be used: For any subset $K \subseteq J$, let $\pi_K : \prod_{j \in J} X_j \to \prod_{j \in K} X_j$ be the natural projection. For any $i \in J$ and any subset $U \subseteq \prod_{j \in J} X_j$, let $U_i = \pi_{\{i\}}U$. For a point $x \in \prod_{j \in J} X_j$, let x(i) denote the ith coordinate of x. For a basic open subset $U \subseteq \prod_{j \in J} X_j$, let supp $U = \{i \in J : U_i \neq X_i\}$. If A is a set, then $[A]^{<\omega}$ denotes the set of all finite subsets of A and $[A]^{\leq \omega}$ denotes the set of countable subsets of A. Elementary submodels are used extensively in the first section. See [5] for the necessary background and notation on elementary submodel techniques.

We would like to thank Nobuyuki Kemoto who found a number of errors in an earlier draft of this paper.

1. Arbitrary products of ordinals are κ -normal

This section is devoted to the proof of the following theorem:

Theorem 1. If α_i is an ordinal for each $i < \lambda$, then $Z = \prod_{i < \lambda} \alpha_i$ is κ -normal.

Proof. Let A and B be any nonempty regular closed disjoint subsets of Z. Write $A = \overline{\cup \mathcal{U}}$ and $B = \overline{\cup \mathcal{V}}$, where \mathcal{U} and \mathcal{V} are collections of basic open subsets of Z. Choose a sufficiently large θ , and let $\mathcal{M} \prec H_{\theta}$ be a countable elementary submodel such that A, B, \mathcal{U} , \mathcal{V} , λ , and $\langle \alpha_i \colon i < \lambda \rangle \in \mathcal{M}$. For each $i \in \mathcal{M} \cap \lambda$, we have $X_i^* = \mathcal{M} \cap \alpha_i$ is of the form $\bigcup_{j \in J_i} [\beta_j, \beta_{j+1})$, a pairwise disjoint union. Give each X_i^* the order topology. Note that this topology is in general coarser than the subspace topology. For example, if $\alpha_i \geqslant \omega_1$, then $\omega_1 \in X_i^*$ and ω_1 is a limit point of $\mathcal{M} \cap \omega_1$. Now, for each $i \in \mathcal{M} \cap \lambda$, there is $z_i \in \omega_1$ such that X_i^* , with the order topology, is homeomorphic to z_i . For each $i \in \mathcal{M} \cap \lambda$, define X_i as follows. If X_i^* is unbounded in α_i , let $X_i = X_i^*$. In the case that X_i^* is bounded in α_i , let $X_i = X_i^* \cup \{\sup X_i^*\}$; so, X_i is the one-point compactification of X_i^* . Finally, let $X = \prod_{i \in \mathcal{M} \cap \lambda} X_i$. Now, for each $U \in \mathcal{U} \cap M$, let $U^* = \pi_{(\mathcal{M} \cap \lambda)} U$, and let $U' = U^* \cap X$. For each $V \in \mathcal{V} \cap M$, define V^* and V' in a similar way. Let

$$A' = \overline{\bigcup \big\{U' \colon U \in \mathcal{U} \cap M\big\}^X} \quad \text{and} \quad B' = \overline{\bigcup \big\{V' \colon V \in \mathcal{V} \cap M\big\}^X}.$$

Claim 1. $A' \cap B' = \emptyset$.

Proof of Claim 1. Suppose not. Pick $x \in A' \cap B'$. For each $i \in \mathcal{M} \cap \lambda$, let $a_i = \sup(\mathcal{M} \cap x(i))$. Note that if $\mathcal{M} \cap x(i)$ is unbounded in x(i), then $a_i = x(i)$, and if $\mathcal{M} \cap x(i)$ is bounded in x(i), then $a_i < x(i)$. Let $y \in Z$ be such that $y(i) = a_i$ for each $i \in \mathcal{M} \cap \lambda$. Let

W be any basic open neighborhood of y in Z. For each $i \in \text{supp } W \cap \mathcal{M}$, let $W_i = (\beta_i, y(i)]$ and without loss of generality, we may assume that $\beta_i \in X_i$ for each $i \in \text{supp } W \cap \mathcal{M}$. Note that for each $i \in \text{supp } W \cap \mathcal{M}$, we have that $\beta_i < y(i) \le x(i)$ and hence $(\beta_i, x(i)] \cap X_i$ is a neighborhood of x(i) in X_i . Define $W' \subset X$ as follows: For each $i \in \mathcal{M} \cap \lambda$, put

$$W_i' = \begin{cases} X_i, & \text{if } i \notin \operatorname{supp} W \cap \mathcal{M}, \\ (\beta_i, x(i)] \cap X_i, & \text{if } i \in \operatorname{supp} W \cap \mathcal{M}. \end{cases}$$

ď,

Then W' is an open neighborhood of x in X. Thus there exists $U \in \mathcal{U} \cap M$ and $V \in \mathcal{V} \cap M$ such that for each $i \in \operatorname{supp} W \cap M$ we have that

$$((\beta_i, x(i)] \cap X_i) \cap U_i \neq \emptyset \neq ((\beta_i, x(i)] \cap X_i) \cap V_i.$$

Let $i \in \operatorname{supp} U \cap \operatorname{supp} W \subseteq \operatorname{supp} W \cap \mathcal{M}$. Then we always have that $(\beta_i, x(i)] \cap X_i \subseteq (\beta_i, y(i)]$, thus W_i meets U_i . Thus $W \cap U \neq \emptyset$. Similarly, $W \cap V \neq \emptyset$. Thus $y \in A \cap B$, a contradiction. Thus Claim 1 is proved.

Now, for each $x \in Z$, define $x' \in X$ as follows: For each $i \in \mathcal{M} \cap \lambda$, put

$$x'(i) = \begin{cases} x(i), & \text{if } x(i) \in \mathcal{M}, \\ \min((\mathcal{M} \cap \alpha_i) \setminus x(i)), & \text{if } x(i) \notin \mathcal{M} \text{ and there is such a minimum,} \\ \sup(\mathcal{M} \cap \alpha_i), & \text{otherwise.} \end{cases}$$

Note that if $x \in Z$ and $i \in \mathcal{M} \cap \lambda$ such that $x(i) \notin \mathcal{M}$ and $\min((\mathcal{M} \cap \alpha_i) \setminus x(i)) = x'(i) \in \mathcal{M}$, then x(i) < x'(i), and if $x(i) \notin \mathcal{M}$ and $\sup(\mathcal{M} \cap \alpha_i) = x'(i) \in \mathcal{M}$, then x'(i) < x(i).

Claim 2. If $x \in A$, then $x' \in A'$, and if $x \in B$, then $x' \in B'$.

Proof of Claim 2. Let $x \in A$ be arbitrary. Let W' be an arbitrary open neighborhood of x' in X. We need to show that there exists $U \in \mathcal{U} \cap M$ such that $U' \cap W' \neq \emptyset$. Note that for each $i \in \text{supp } W' = F$ there exists $\beta_i \in X_i$ such that $\beta_i < x'(i)$ and $W'_i = (\beta_i, x'(i)] \cap X_i$. By the definition of x' we have that for each $i \in F$, $\beta_i < x(i)$. Let $G = \{i \in F : x(i) \leq x'(i)\}$; and $K = \{i \in F : x(i) > x'(i)\}$. Define $W \subset Z$ as follows: For each $i < \lambda$, put

$$W_i = \begin{cases} \alpha_i, & \text{if } i \notin F, \\ (\beta_i, x(i)], & \text{if } i \in F. \end{cases}$$

Then W is an open neighborhood of x in Z. Thus there exists $U^0 \in \mathcal{U}$ such that $U^0 \cap W \neq \emptyset$, which means that the following statement Φ is true:

 Φ : There exists $U^0 \in \mathcal{U}$ such that for each $i \in \operatorname{supp} U^0 \cap \operatorname{supp} W \subseteq F$ we have $U_i^0 \cap (\beta_i, x(i)] \neq \emptyset$.

Since \mathcal{U} , F, (β_i, α_i) , supp $U^0 \cap F$ and β_i for each $i \in F$ are all in \mathcal{M} , then by elementarity of \mathcal{M} we conclude that there exists $U \in \mathcal{U} \cap \mathcal{M}$ such that for each $i \in \text{supp } U \cap \text{supp } W \subseteq F$ we have that if $i \in G$, then $(U_i \cap (\beta_i, x(i)]) \cap \mathcal{M} \neq \emptyset$. And if $i \in K$, then $(U_i \cap (\beta_i, \alpha_i)) \cap \mathcal{M} \neq \emptyset$. This can be done even though x(i) may not be an element of \mathcal{M} (indeed, replace $(\beta_i, x(i)]$ by $(\beta_i, x'(i)]$ or by (β_i, α_i) depending on which case x'(i) was defined). Now pick such a $U \in \mathcal{U} \cap \mathcal{M}$ and let $i \in \text{supp } U \cap \text{supp } W \subseteq F$ be arbitrary.

Observe that if $i \in G$, then $\emptyset \neq (U_i \cap (\beta_i, x(i)]) \cap \mathcal{M} = U'_i \cap (\beta_i, x'(i)]$; and if $i \in K$, then $\emptyset \neq (U_i \cap (\beta_i, \alpha_i)) \cap \mathcal{M} = U'_i \cap (\beta_i, x'(i)]$. Thus we have found $U \in \mathcal{U} \cap \mathcal{M}$ such that $U' \cap W' \neq \emptyset$, hence $x' \in A'$. Similar argument will show that if $x \in B$, then $x' \in B'$. So Claim 2 is proved.

Now, A' and B' are regular closed disjoint in $X = \prod_{i \in \mathcal{M} \cap \lambda} X_i$. Since $|\mathcal{M} \cap \lambda| \leq \aleph_0$ and $X_i \cong z_i \in \omega_1$ for each $i \in \mathcal{M} \cap \lambda$, then X is metrizable. So, fix open disjoint subsets G and H of X such that $A' \subseteq G$ and $B' \subseteq H$. For each $x \in A$, fix a basic open neighborhood U(x') of x' in X such that $U(x') \subseteq G$. Note that for each $i \in \text{supp } U(x')$ there exists $\beta_i < x'(i)$ such that $\beta_i \in X_i$ and $U(x')_i = (\beta_i, x'(i)] \cap X_i$ and by the definition of x' we always have that $\beta_i < x(i)$. Define an open neighborhood U(x) of x in $X = \prod_{i < \lambda} \alpha_i$ as follows: For each $i < \lambda$, put

$$U(x)_i = \begin{cases} \alpha_i, & \text{if } i \notin \text{supp } U(x'), \\ (\beta_i, x(i)], & \text{if } i \in \text{supp } U(x') \text{ and } x(i) \leqslant x'(i), \\ (x'(i), x(i)], & \text{if } i \in \text{supp } U(x') \text{ and } x'(i) < x(i). \end{cases}$$

Similarly, for each $y \in B$, fix a basic open neighborhood V(y') of y' in X such that $V(y') \subseteq H$. Note that for each $i \in \text{supp}V(y')$ there exists $\gamma_i < y'(i)$ such that $\gamma_i \in X_i$ and $V(y')_i = (\gamma_i, y'(i)] \cap X_i$ and by the definition of y' we always have that $\gamma_i < y(i)$. Define an open neighborhood V(y) of y in Z as follows: for each $i < \lambda$, put

$$V(y)_i = \begin{cases} \alpha_i, & \text{if } i \notin \text{supp } V(y'), \\ (\gamma_i, y(i)], & \text{if } i \in \text{supp } V(y') \text{ and } y(i) \leqslant y'(i), \\ (y'(i), y(i)], & \text{if } i \in \text{supp } V(y') \text{ and } y'(i) < y(i). \end{cases}$$

Claim 3. $U(x) \cap V(y) = \emptyset$ for each $x \in A$ and $y \in B$.

Proof of Claim 3. Suppose not, then there exists $x \in A$ and $y \in B$ such that $U(x) \cap V(y) \neq \emptyset$. Since $U(x') \cap V(y') = \emptyset$, then there is an $i \in \text{supp } U(x) \cap \text{supp } V(y)$ which satisfy $U(x')_i \cap V(y')_i = \emptyset$. This implies that either $\beta_i < x'(i) \le \gamma_i < y'(i)$ or $\gamma_i < y'(i) \le \beta_i < x'(i)$.

Case 1. $x(i) \le x'(i)$ and $y(i) \le y'(i)$. So, $U(x)_i = (\beta_i, x(i)) \subseteq (\beta_i, x'(i))$ and $V(y)_i = (\gamma_i, y(i)) \subseteq (\gamma_i, y'(i))$. If x'(i) = y'(i), then $U(x')_i \cap V(y')_i \ne \emptyset$, a contradiction. So, assume, without loss of generality, x'(i) < y'(i). Since $(\beta_i, x'(i)) \cap (\gamma_i, y'(i)) \cap X_i = \emptyset$ and $\gamma_i \in \mathcal{M}$, then $x'(i) \le \gamma_i$. Thus $(\beta_i, x(i)) \cap (\gamma_i, y(i)) = U(x)_i \cap V(y)_i = \emptyset$, a contradiction. Case 2. $x(i) \le x'(i)$ and y'(i) < y(i). This means that $x'(i) < \sup(\mathcal{M} \cap \alpha_i) = y'(i)$, so $U(x)_i \cap V(y)_i = \emptyset$, a contradiction.

Case 3. x'(i) < x(i) and $y(i) \le y'(i)$. This case is similar to case 2.

Case 4. x'(i) < x(i) and y'(i) < y(i). This means $x'(i) = \sup(\mathcal{M} \cap \alpha_i) = y'(i)$, thus $U(x')_i \cap V(y')_i \neq \emptyset$, a contradiction.

So, in all cases we get a contradiction, so Claim 3 is proved.

Define $U(A) = \bigcup_{x \in A} U(x)$ and $V(B) = \bigcup_{y \in B} V(y)$, then U(A) and V(B) are open in Z containing A and B, respectively. By Claim 3, we conclude that $U(A) \cap V(B) = \emptyset$. So, A and B can be separated, hence Z is κ -normal. This completes the proof of Theorem 1. \square

2. Countable products of ordinals are densely normal

In this section we will give an alternate proof for the countable case. It will be a corollary for the following theorem

Theorem 2. Suppose that α_i is an ordinal for each $i \in \omega$. Then $\prod {\{\alpha_i : i \in \omega\}}$ is densely normal.

To prove Theorem 2 we will prove a theorem on normality of products of certain subspaces of ordinals. This result extends a theorem of van Douwen and Vaughan.

In [7] (see also [8]), Nogura defined for an infinite cardinal τ and an ordinal α , the subspace $S(\tau, \alpha)$ of the ordinal space $\alpha + 1$ by

$$S(\tau, \alpha) = \{ \beta \leqslant \alpha : \operatorname{cf}(\beta) \leqslant \tau \}.$$

He proved the following:

Theorem 3 (Nogura). If τ is an infinite cardinal, then $(S(\tau, \alpha))^{\omega}$ is normal for any ordinal α .

In [2], van Douwen and Vaughan gave a generalization of Theorem 3. They defined for each uncountable cardinal τ and each infinite ordinal α , the subspace $S'(\tau, \alpha)$ of the ordinal space $\alpha + 1$:

$$S'(\tau, \alpha) = \{ \beta \leqslant \alpha \colon \operatorname{cf}(\beta) < \tau \}.$$

They proved the following:

Theorem 4 (van Douwen and Vaughan). If τ is uncountable, $\lambda < \tau$, and α_i are infinite ordinals for each $i < \lambda$, then $\prod \{S'(\tau, \alpha_i): i < \lambda\}$ is normal.

Also, they gave the following corollary to their theorem:

Corollary 1 (van Douwen and Vaughan). If τ is infinite and $\lambda \leqslant \tau$, then $\prod_{i < \lambda} S(\tau, \alpha_i)$ is normal.

Now, let τ be an uncountable cardinal and α be any ordinal. Define the subspace $S''(\tau, \alpha)$ of the ordinal space α by

$$S''(\tau, \alpha) = \{ \beta < \alpha : \operatorname{cf}(\beta) < \tau \}.$$

The version of Theorem 4 for S'' is false whenever $\tau > \omega_1$. Indeed, if $\omega < \lambda < \tau$ then one need only consider the non-normal product ω^{λ} and if $2 \le \lambda \le \omega$ it suffices to consider $\omega_1 \times (\omega_1 + 1)$. However, if $\tau = \omega_1$ then we obtain the following theorem not covered by the theorems of Nogura or van Douwen and Vaughan.

Theorem 5. If α_i is an ordinal for each $i < \omega$, then $\prod \{S''(\omega_1, \alpha_i): i < \omega\}$ is normal.

Proof. Fix $\langle \alpha_i : i \in \omega \rangle$. To simplify our notation, let $Y_i = S''(\omega_1, \alpha_i)$ for each $i < \omega$, and $Y = \prod_{i \in \omega} Y_i$. Then Y is first countable being a countable product of first countable spaces. The following theorem from [13] will be used:

Theorem 6 (Zenor). Suppose that all finite subproduct of a product space $Z = \prod_{i < \omega} Z_i$ are normal, then Z is normal if and only if Z is countably paracompact.

Also, we need the following lemma whose straightforward proof we leave to the reader.

Lemma 1. If for each $i \in \omega$ either $cf(\alpha_i) > \omega$ or $cf(\alpha_i) = 1$, then Y is countably compact.

To complete the proof we will show that any finite subproduct of Y is normal and that Y is countably paracompact. Applying Zenor's theorem will complete the proof.

First consider the case that for each $i \in \omega$, α_i is infinite and either $\mathrm{cf}(\alpha_i) > \omega$ or $\mathrm{cf}(\alpha_i) = 1$. Partition ω into two subsets A and B such that $\mathrm{cf}(\alpha_i) > \omega$ for each $i \in A$ and $\alpha_i = \zeta_i + 1$ for each $i \in B$. Note that for each $i \in A$ we have

$$Y_i = \{ \beta < \alpha_i : \operatorname{cf}(\beta) < \omega_1 \} = \{ \beta < \alpha_i + 1 : \operatorname{cf}(\beta) < \omega_1 \} = S'(\omega_1, \alpha_i),$$

and for each $i \in B$ we have

$$Y_i = \left\{ \beta < \alpha_i : \operatorname{cf}(\beta) < \omega_1 \right\} = \left\{ \beta \leqslant \zeta_i : \operatorname{cf}(\beta) < \omega_1 \right\} = S'(\omega_1, \zeta_i).$$

Therefore, by Theorem 4, $\prod_{i \in \omega} Y_i = Y$ is normal. Second, assume that for each $i \in \omega$ either $\mathrm{cf}(\alpha_i) > \omega$ or $\mathrm{cf}(\alpha_i) = 1$ but there are some $i \in \omega$ such that α_i is finite. Partition $\omega = E \cup F$ where α_i is infinite for each $i \in E$ and α_i is finite for each $i \in F$. Then for each $i \in F$, $Y_i = \alpha_i$ which is compact, hence $\prod_{i \in F} Y_i$ is T_2 -compact metrizable and $\prod_{i \in E} Y_i$ is countably compact (by Lemma 1) and normal. Thus by Stone's theorem, see [12], we get that $Y = (\prod_{i \in F} Y_i) \times (\prod_{i \in E} Y_i)$ is normal.

Claim 4. For each $n \in \omega$, $\prod_{i \leq n} Y_i$ is normal. (Hence any finite subproduct of Y is normal.)

Let $A = \{\alpha_i : \operatorname{cf}(\alpha_i) \neq \omega\}$ and $B = \{\alpha_i : \operatorname{cf}(\alpha_i) = \omega\}$. If $B = \emptyset$ then the product is normal as above, and if $B \neq \emptyset$ then the product can be written as a direct sum of clopen normal subspaces.

Claim 5. Y is countably paracompact.

Proof of Claim 5. The proof of this claim is rather tedious but straightforward.

If for each $i \in \omega$, $\operatorname{cf}(\alpha_i) > \omega$ or $\operatorname{cf}(\alpha_i) = 1$, then we have by Lemma 1 that Y is countably compact, hence countably paracompact. So write $\omega = A \cup B$, where $\operatorname{cf}(\alpha_i) > \omega$ or $\operatorname{cf}(\alpha_i) = 1$ for each $i \in A$ and $\operatorname{cf}(\alpha_i) = \omega$ for each $i \in B$. And assume $B \neq \emptyset$. If B is finite, then Y can be written as a direct sum of clopen countably paracompact subspaces of Y, thus Y is countably paracompact.

So, assume now B is infinite. For each $i \in B$, define $L_{\alpha_i} = \{\beta < \alpha_i : \operatorname{cf}(\beta) > \omega\}$. And let $\alpha_i^* = \sup(L_{\alpha_i})$. We are going to define for each $i \in B$ a countable ordinal $z_i < \omega_1$ and

a continuous open and onto function $f_i:\alpha_i\to z_i$ by considering the following possible cases.

Case 1. $L_{\alpha_i} = \emptyset$, then $\alpha_i < \omega_1$: Let $z_i = \alpha_i$ and let f_i = the identity map.

Case 2. $\alpha_i = \alpha_i^*$: Choose $\beta_i^n \in L_{\alpha_i}$ increasing and cofinal in α_i such that $\beta_i^0 = 0$. Let $z_i = \omega$ and let f_i be defined so that $f_i^{-1}(n) = (\beta_i^n, \beta_i^{n+1}]$.

Case 3. $\alpha_i^* = \max L_{\alpha_i} < \alpha_i$: Let $z_i = \omega$ and choose $\{\beta_i^n \mid n \in \omega\}$ an increasing cofinal in α_i sequence of successor ordinals with $\beta_i^0 = 0$ and $\beta_i^n > \alpha_i^*$ for n > 0 and define f_i as in

Case 4. $\alpha_i^* = \sup L_{\alpha_i}, \alpha_i^* < \alpha_i$ and $\operatorname{cf}(\alpha_i^*) = \omega$: Let $z_i = \omega + \omega$ and choose $\{\beta_i^n \mid n \in A_i^*\}$ $\omega + \omega$ an increasing cofinal in α_i sequence of ordinals such that $\{\beta_i^n: n \in \omega\}$ is as in Case 2, and $\{\beta_i^n \mid \omega \leq n < \omega + \omega\}$ is as in Case 3 and define f_i as in Case 2.

For each $i \in B$, let $g_i = f_i | Y_i$, the restriction of f_i to Y_i . Define $g: (\prod_{i \in A} Y_i) \times I$

- $(\prod_{i \in B} Y_i) \to (\prod_{i \in A} Y_i) \times (\prod_{i \in B} z_i)$ by $g = \prod_{i \in \omega} g_i$. It can be shown that (I) For each $y \in (\prod_{i \in A} Y_i) \times (\prod_{i \in B} z_i)$, $g^{-1}\{y\}$ is a countably compact subset of $(\prod_{i \in A} Y_i) \times (\prod_{i \in B} Y_i) = Y.$
 - g is a closed mapping.

So, the countable paracompactness of Y follows from Hanai's theorem, [3, Exercise 5.2.G]. This completes the proof of the claim.

Now, by Zenor's theorem, we may conclude that Y is normal. This completes the proof of Theorem 5. \square

We now turn to the proof of Theorem 2. Let α_i be an ordinal for each $i \in \omega$ and let $X = \prod_{i \in \omega} \alpha_i$. For each $i \in \omega$, define $Y_i = \{\beta < \alpha_i : \operatorname{cf}(\beta) < \omega_1\} = S''(\omega_1, \alpha_i) \subseteq \alpha_i$, and let $Y = \prod_{i \in \omega} Y_i \subseteq X$. We will use the following theorem of Arhangel'skii, see [1]:

Theorem 7 (Arhangel'skii). If P is a normal subspace of Q such that P is C^* -embedded in Q, then Q is normal on P.

Thus, to prove Theorem 2 it suffices to prove the following lemma:

Lemma 2. Y is C^* -embedded in X.

Proof. By Taimonov's theorem [3, Theorem 3.2.1] it suffices to show that if E and F are any closed disjoint subsets of Y then $\overline{E} \cap \overline{F} = \emptyset$. By way of contradiction fix E and F closed subsets of Y and $x = \langle x_n : n \in \omega \rangle \in X$ such that $x \in \overline{E} \cap \overline{F}$. Partition $\omega = A \cup B$ such that $cf(x_n) > \omega$ if and only if $n \in B$. Since $x \notin Y$ we have $B \neq \emptyset$. We consider only the case where B is infinite (the finite case is easier).

Enumerate B as $\{n_i: i \in \omega\}$. Let $\{U_n: n \in \omega\}$ be a local neighborhood base at $x \mid A$ in $\prod_{n\in A} \alpha_n$. We construct elements $a^m \in E$ and $b^m \in F$ recursively as follows. Let

$$W_0 = (0, x_{n_0}] \times \left(\prod_{n \in B \setminus \{n_0\}} \alpha_n \right) \times U_0.$$

 W_0 is an open neighborhood of $x \in X$ so we may pick $a^0 \in E \cap W_0$. Let

$$V_0 = \left(a_{n_0}^0, x_{n_0}\right] \times \left(\prod_{n \in B \setminus \{n_0\}} \alpha_n\right) \times U_0.$$

 V_0 is an open neighborhood of $x \in X$ so we may pick $b^0 \in F \cap W_0$. Having chosen a^i and b^i for all i < m let

$$W_m = \prod_{i < m} \left(b_{n_i}^i, x_{n_0} \right) \times \left(\prod_{n \in B \setminus \{n_i : i < m\}} \alpha_n \right) \times U_m.$$

 W_m is an open neighborhood of $x \in X$ so we may pick $a^m \in E \cap W_m$. Let

$$V_m = \prod_{i < m} \left(a_{n_i}^i, x_{n_i} \right] \times \left(\prod_{n \in B \setminus \{n_i: i < m\}} \alpha_n \right) \times U_m.$$

 V_m is an open neighborhood of $x \in X$ so we may pick $b^m \in F \cap W_0$.

For each $i \in \omega$ let $y_{n_i} = \sup\{a_{n_i}^m : m > i\}$ by construction it follows that also $y_{n_i} =$ $\sup\{b_{n_i}^m: m > i\}$. In particular both sequences $\langle a^m|B: m \in \omega \rangle$ and $\langle b^m|B: m \in \omega \rangle$ converge

For $n \in A$, let $y_n = x_n$. This defines $y \in Y$. To finish the proof we will reach a contradiction by showing that $y \in \overline{E} \cap \overline{F}$. Fix O a basic open neighborhood of y. So $O = G \times H$ where G is open in $\prod_{n \in B} \alpha_n$ and H is open in $\prod_{n \in A} \alpha_n$. Fix m large enough so that $U_m \subseteq H$ and such that both $a^m | B \in G$ and $b^m | B \in G$. Then since both $a^m | A \in U_m$ and $b^m | A \in U_m$ we have that both $a^m \in O$ and $b^m \in O$. This completes the proof.

Since dense normality implies κ -normality, see [1], we obtain an alternate proof of the countable instance of Theorem 1:

Corollary 2. Any countable product of ordinals is κ -normal.

We conclude with the following natural problems:

Problem 1. Is the product of any family of subspaces of ordinals κ -normal?

Problem 2. Let $X = \prod_{i \in I} X_i$. Is $X \kappa$ -normal assuming either

- (a) $\prod_{i \in J} X_i$ is κ -normal for each $J \in [I]^{<\omega}$; or (b) $\prod_{i \in J} X_i$ is κ -normal for each $J \in [I]^{\leq \omega}$?

The analogous problem for normal spaces has many interesting counterexamples (see [9]). In fact, we do not know whether any of these examples are κ -normal. So the problems are open even if we assume that the subproducts are, for example, normal or even Lindelöf. We do have a positive answer to the above problems in some special cases: Shchepin proved that the product of any family of κ -metrizable spaces is κ -metrizable (hence κ -normal), see [11], so no counterexample can consist of κ -metrizable spaces X_i .

If X is ccc and every countable subproduct is κ -normal, then X is κ -normal. This is because the closure of any open subset of X depends on only countably many coordinates (see [3]).

References

- [1] A.V. Arhangel'skii, Relative topological properties and relative topological spaces, Topology Appl. 70 (1996) 87–99.
- [2] E.K. van Douwen, J. Vaughan, Some subspaces of ordinals with normal product, in: Papers on General Topology and Related Category Theory, Ann. New York Acad. Sci., Vol. 552.
- [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [4] W. Just, J. Tartir, A κ -normal, not densely normal Tychonoff space, Proc. Amer. Math. Soc. 127 (3) (1999) 901–905.
- [5] W. Just, M. Weese, Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician, Graduate Stud. in Math., Vol. 18, American Mathematical Society, Providence, RI, 1977.
- [6] L. Kalantan, Results about κ -normality, Topology Appl., to appear.
- [7] T. Nogura, Countably compact extensions of topological spaces, Topology Appl. 15 (1983) 65–69.
- [8] T. Nogura, Correction: "Countably compact extensions of topological spaces", Topology Appl. 23 (1986) 313–314.
- [9] T.C. Przymusiński, Product of normal spaces, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 781–826.
- [10] E.V. Shchepin, Real function and near-normal spaces, Siberian Math. J. 13 (5) (1972) 820-830.
- [11] E.V. Shchepin, On κ -metrizable spaces, Math. USSR Izv. 14 (2) (1980) 407–440.
- [12] A.H. Stone, Paracompactness and product of spaces, Bull. Amer. Math. Soc. 54 (1948) 977–982.
- [13] P. Zenor, On countable paracompactness in product spaces, Prace Mat. 13 (1969) 23-32.