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Abstract

A regular topological space is cailed x-normal if any two disjoint regular closed subsets can
be separated. In this paper we will show that any product of ordinals is x-normal. In addition
a generalization of a theorem of van Douwen and Vaughan will be proven and used to give an
ajternate proof that the product of any countable family of ordinals is «-normal.
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E.V. Shchepin introduced, in {10], the class of x-normal (also called mildly normal)
topological spaces. A regular topological space is called x-wormal if any two disjoint
regular closed subsets can be separated. Recall that a subset A of a topological space X is
said to be regular closed (also called k~closed or canonically closed) if A = int A. A subset
A is said to be regular open (or k-open or canonically open) if A = int(A). Two subsets
A and B of a space X are said to be separared if there exist two open disjoint subsets
Uand V of X such that A C UV and B € V. A subspace P of Q is C*-embedded if any
bounded continuous real-valued function on P can be continuously extended to Q. If ¥ is
a subspace of X, then X is normal on Y, see [1], if any pair A and B of closed disjoint
subsets of X suchthat A= AR Y and B=B N7 canbe separated. X is densely normal
if there is a dense subspace ¥ of X such that X is normal on ¥. Any densely normal space
is x-normal [1}, but not every «-normal space is densely normal {4].

In [6], the class of «-normal spaces was further studied. It was shown that most
pathologies present for normal spaces also appear for x-normality. Also, many standard
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non-normai spaces are «-normal. For example, the square of the Sorgenfrey line, w®!,
w1 ¥ {w1 + 1), and the Tychonoff plank are x-normal but not normal.

In this paper we show that any product of ordinals is x-normal. The first section contains
a proof of the full result. An alternate proof for the countable case will be given in the
second section. In fact, we prove a stronger resuit for the countable case, that the product
of any countable family of ordinals is densely normal. Towards proving this resuli, an
extension of a theorem of van Douwen and Vaughan will be established.

The following notation will be used; For any subset K C J, let my :Hj‘E 7 Xi—
[1;ex X; be the natural projection. For any i € J and any subset U < ﬂjej Xy, let
U = 7 U. For a point x € [];c; X, let x{i) denote the ith coordinate of x. For a
basic open subset U € [{..; X, letsuppU = (i € J: U; # X;}. If A is a set, then [A]<%
denotes the set of all finite subsets of A and [A]5% denotes the set of countable subsets of
A. Elementary submodels are used extensively in the first section, See [5] for the necessary
background and notation on elementary submode! techniques.

We would like to thank Nobuyuki Kemoto who found a number of errors in an earlier
draft of this paper.

1. Arbitrary products of ordinals are «-normal
This section is devoted fo the proof of the following theorem:
Theorem 1. If o; is an ordinal fov each | < ), then Z =11, _, «; is x-normal.

Proof. Let A and B be any nonempty regular closed disjoint subsets of Z. Write A4 =
Ulf and B = UV, where If and V are collections of basic open subsets of Z. Choose
a sufficiently large 6, and et M < Hy be a countable elemeniary submode! such that A,
B,U,V,  and {&: i <A} € M. Foreachi e MM A, wehave X[ = M Na; is of the
forin U_,‘ ey [Bj. Bj41), & pairwise disjoint union. Give each X' the order topology. Note
that this topology is in general coarser than the subspace topology. For example, if o; > wy,
then wy € X} and @ is a limit point of M Newy. Now, for each i € M N A, thereis z; € oy
such that X7, with the order topology, is homeomorphic to z;. For each i € M N A, define
X; as follows. If X7 is unbounded in @;, let X; = X. In the case that X] is bounded in
@i, let X; = X[ U {sup X7); so, X; is the one-point compactification of X;. Finally, let
X = nieMm X;. Now, foreach U e U N M, let U* = mpqrpyU, and let U/ = U* M X,
Foreach V € VN M, define V* and V' in a similar way. Let

X X
A= J{vrveunm} ad B=|J{v:vevnm} .

Claiml. A’ B =4
Proof of Claim 1. Suppose not. Pick x € A" B'. For each i ¢ M 1 A, let q; =

sup(AM N x(1)). Note that if MNx (3} is unbounded in x (i), then @; = x (), and if M Ox (i)
is bounded in x (i), then a; < x(i). Let y € Z be such that y(i) = @; foreachi ¢ MnNA, Let
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W be any basic open neighborhoodof y in Z. Foreach i € supp WNAM, let Wy = (8, y(i)}
and without loss of generality, we may assume that 5; € X; for each i € supp W N A1, Note
that for each i € supp W N M, we have that 8; < y{(i) € x(i) and bence (8;, x({)] N X; is
a neighborhood of x (i) in X;. Define W' ¢ X as follows: Foreachi € M N A, put

W-’m{Xi' ifidsuppWnm,

!

(Bi, x(D]NX;, HiesuppWnN M,

Then W’ is an open neighborhood of x in X. Thus there exists U e Y N M and
V € V1 M such that for each i € supp W N A we have that

({(Brx®INX)NU #84# ((BxD]NX) NV

Let { € suppU M supp W < supp W N M. Then we always have that (8, x(i}] N X; €
(B, y(i)], thus W; meets U;. Thus WN U £ 8. Similarly, WNV £4. Thusye ANB,a
contradiction. Thus Claim 1 is proved.

Now, for each x € Z, define x" € X as follows: Foreach{ € M N4, put

x(), Hx() e M,
()= { min{(M Ne;)\x(),  ifx() ¢ M and there is such a minimum,
sup(M MNay), otherwise.

Notethatifx € Z andi ¢ AN A suchthat x(i) ¢ A and min((M Ne)\x (@) = x'(I) e
M, then x (@) < x'(1), and if x() ¢ M and sup(M Nay) = x'(i) € M, then x'(i) < x(i).

Claim2. I[fx € A, thenx' € A\, andif x € B, thenx' € B',

Proof of Claim 2. Let x € A be arbitrary, Let W' be an arbitrary open neighborhood of x/
in X. We need to show that there exists U € U N M such that U N W' + & Note that for
each i € supp W’ == F there exists f; € X; such that §; < x'(i) and W/ = (8;, x' (1)1 N X,.
By the definition of x” we have that foreachi € F, B < x(i). Let G={li e F: x(I) £
(O and K = {i € F: x(i) > x'(i)}. Define W ¢ Z as follows: Foreach i < 4, put
W; = {O"" i E
(B, x(i}], ifieF,

Then W is an open neighborhood of x in Z. Thus there exists U% e 4 such that
7% MW # §, which means that the following statement & is true:
@: There exists I/ € I/ such that for each i € suppU° NsuppW € F we have
U O (B, x (D] # 0.
Since U, F, {B:, «;), supp U F and Bi foreach i € F are all in M, then by elementarity
of M we conclude that there exists U € I/ N A such that for each i € suppU Osupp W C F
we have that if i € G, then (U; (B, x (DN M # 3. And ifi € K, then (U; N (B, e NN
M 5 . This can be done even though x{i) may not be an element of A1 (indeed, replace
(Bi, x ()] by (B, x'@) or by (8, o} depending on which case x'(i) was defined). Now
picksucha U e l{ M M and let i € supp U Msupp W € F be arbitrary.
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Observe that if i € G, then @ 5 (U; N (B, x(ON N M= U/ 0 (B, x'(i)]; and if i € K,
then & % (Ui N (Bi, o)) N M = U] 1 (B, x'(i)]. Thus we have found U € U N M such
that &' 11 W' = (4, hence x" € A’. Similar argument will show that if x € B, then x" ¢ B/,
So Claim 2 is proved.

Now, A" and B’ are regular closed disjoint in X = [ ;. p4r; X:- Since [M N2} < R and
X; =z ew foreach i € M N A, then X is metrizable, So, fix open disjoint subsets G
and H of X suchthat A’ € G and B’ € H. Foreach x € A, fix a basic open neighborhood
Ux" of x' in X such that U(x") € &. Note that for each [ € supp U{x") there exists
Bi < x'(iY such that B; € X; and U{x"); = (8;, 2’ ()17 X; and by the definition of x’ we
always have that 8; < x(i). Define an open neighborhood U(x) of x in Z =[], _; & as
follows: For each { < X, put

o, if i ¢ supp U (x"),
Ulx)i = § (B, x()], if i € supp U (x") and x (i) < x'(i),
(XY, x (D1, i esuppU(x") and X' (i) < x(i).

Similarly, for each v € B, fix a basic open neighborhood V(y") of y" in X such that
V(y) € H. Note that for each i € suppV (y") there exists y; < (i) such that y; € X; and
V(v = (31, Y{i}] N X; and by the definition of ¥’ we always have that y; < y(i}, Define
an open neighborhood V{y) of v in Z as follows: foreach i < 4, put

o, ifi ¢supp V{y").
Vv =1 (¥l if i e supp V{(y") and y(i) < y'(i),
G0, y®1, HiesappV(y)and y'(@) < ().

Claim3. UX)NV(W) = foreachx € Aandy € B.

Proof of Claim 3. Suppose not, then there exists x € A and y € B suchthat U {x) NV (y) 54
@. Since U(x)y N V(¥') = @, then there is an i € supp I/ (x} (" supp V() which satisfy
Uix"; MV {y"; = @. This imples thateither 8; < x' (D <y <y (Dory < Y < f <
x'i).

Case 1. x(i) < x'(i) and y() < ¥'(i). So, U(x); = (B;, x ()} € (By, x(i)] and V(y); =
(i, y(D] € (v, ¥ (O] IF XY = y'(i), then U{x"; N V(¥'); # B, a contradiction. So,
assume, without loss of generality, x'(/) < ¥{i). Since (B, x" (DN (y, Y (¥ NX; = Fand
yi € M, then x' () < v Thus (6, x O N{y, v = Tix); NV (y); = B, a contradiction.

Case 2. x(i) < x'(i} and ¥'(i) < y(i}. This means that x"{i) < sup(M Na;) = ¥'(i), so
U(x); N V{y); = @, a contradiction.

Case 3. x'(i) < x(i) and y{i) < y'(i). This case is similar to case 2.

Case 4. x'(i) < x(i) and ¥'(i) < y(i). This means x'({) = sup{ M N a;) = ¥'(i), thus
Uxy NV(Y); % 4, a contradiction,

So, in all cases we get a contradiciion, so Claim 3 is proved.

Define U(A) = {J, 4 Ulx) and V(B) = UJ,EB V(y), then U{A} and V(R) are open in
Z containing A and B, respectively. By Claim 3, we conclude that U (AYNV(B) = 4. S0, A
and B can be separated, hence Z is «-normal. This completes the proof of Theorem 1. [
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2. Countable products of ordinals are densely normal

In this section we will give an altemate proof for the countable case. It wili be a coroilary
for the following theorem

Theorem 2. Suppose that oy is an ordinal for each i € w. Then {[loy: { € w} is densely
novrmal.

To prove Theorem 2 we will prove a theorem on normality of products of certain
subspaces of ordinals. This result extends a theorem of van Douwen and Vaughan,

In [7} {see also [8]), Nogura defined for an infinite cardinal v and an ordinal &, the
subspace S(r, ) of the ordinal space o + 1 by

S(roe)={f <oz () < T}
He proved the following:

Theorem 3 (Nogura). If t is an infinite cardinal, then (S{(t, )" is normal for any
ordinal o.

In {2}, van Douwen and Vaughan gave a generalization of Theorem 3. They defined
for each uncountable cardinal v and each infinite ordinal &, the subspace §'(z, o) of the
ordinal space o + 1:

S{r.a)={B < cf(f) <t}
They proved the following:

Theorem 4 (van Douwen and Vaughan). If 7 is uncountable, h < 1, and «; are infinite
ordinals for each i < A, then [ [{S'(v, o)1 i < )} is normal.

Also, they gave the following corollary to their theorem:

Corollary 1 {(van Douwen and Vaughan). If 7 is infinite and A < t, then [{;, S(r, o) is
normal.

Now, let 7 be an uncountable cardinal and o be any ordinal. Define the subspace $7 (1, o)
of the ordinal space & by

Sy ={B < of(f) < 7},

The version of Theorem 4 for 57 is false whenever 7 > . Indeed, if @ < A < 1 then
one need only consider the non-normal product @* and if 2 € A € w it suffices to consider
w1 x {o) + 1). However, if T = w; then we obtain the following theorem not covered by
the theorems of Nogura or van Douwen and Vaughan.

Theorem 5. If o; is an ovdinal for each i < o, then [ [{S7 (w1, o)1 § < w} is normal.
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Proof. Fix {(o;: i € w). To simplify our notation, let ¥; = §” (w1, ;) for each i < w, and
¥ =TTe, ¥i- Then ¥ is first countable being a countable product of first countable spaces.
The following theorem from: [13] will be used:

Theorem 6 (Zenor). Suppose that all finite subproduct of a product space 7 = [, Zi
are novmal, then Z is novmal if and only if Z is countably paracompact,

Also, we need the following lemma whose straightforward proof we leave to the reader.
Lemma 1. [ffor each i € w either ¢f(o;) > worcflw)) =1, then Y is countably compact.

To complete the proof we will show that any finite subproduct of ¥ is normal and that ¥
is countably paracompact. Applying Zenor’s theorem will complete the proof.

First consider the case that for each i € a1, o is infinite and either cf(e) > w or
cf{e;} = 1. Partiion w into two subsets A and B such that cf(e;) > w for cach i € 4
and o; = &; + 1 foreach i € B. Note that for each i € A we have

Vi={f<ancfp) <o) ={B<a+1 cf(f) <o} =5, m)
and foreach i € B we have
Yi={f < of(f) <on}=[p < of(B) < on} = 5tor, ).

Therefore, by Theorem 4, []; cw 1i = Y is normal. Second, assume that for each i € w
either cf{a;) > w or cf(ey) = 1 but there are some i € @ such that «; is finite. Partition
w= EUF where o; is infinite for each { € E and ¢ is finite for each i € F. Then for each
i€ F,¥; =a; which is compact, hence [, e p i is Th-compact metrizable and [LepYiis
countably compact (by Lemma 1) and normal. Thus by Stone’s theorem, see [12], we get
that ¥ = (I'];. p Vi) x (T}, ¥i) is normal.

Claim 4. Foreachn € w, Hign ¥ is normal. (Hence any finite subproduct of Y is normal )

Let A= {oy: of(a;) # o} and B = {a;: ¢f(oy) = w). If B = @ then the product is normal
as above, and if B 5 ) then the product can be written as a direct sum of clopen normal
subspaces.

Claim 5, V is countably paracompact.

Proof of Claim §. The proof of this claim is rather tedious but straightforward,

If for each i € w,cf(e;) > @ or cf(ey) = 1, then we have by Lemma | that ¥ is
countably compact, hence countably paracompact. So write w = A U B, where cf(w;) > @
or cf(ey) = 1 for each i € A and cf{e;) = w for cach i ¢ B. And assume B # @. If B is
finite, then ¥ can be written as a direct sum of ciopen countably paracompact subspaces of
Y, thus Y is countably paracompact.

So, assume now B is infinite. For each / € B, define L, = {8 < ¢;: ¢f(8) > w}. And
let of = sup(L,;). We are going to define for each i € B a countable ordinal 7; < w; and
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a confinuous open and onto fuaction f; :e; = z; by considering the following possible
cases.

Case }. Ly, =, then o < wy: Let z; = o and let f; = the identity map.

Case 2. &; = o: Choose A" € Ly, increasing and cofinal in &y such that ,Bio =0, Let
zi = and let f; be defined so that £, (n) = (8", g+,

Case 3. o =max Ly, < o;: Let z; == o and choose { B;" | n € w} an increasing cofinal in
o; sequence of successor ordinals with ﬁio =0and ' > «f for n > 0 and define f; as in
Case 2.

Case 4. af =sup Lo, o} < o and cf{a)) = w: Let z; = & + o and choose {8 Ine
® + w} an increasing cofinal in o; sequence of ordinals such that { Bl n e w}is as in
Case 2, and {8 | w < n < @ + w) is as in Case 3 and define f; as in Case 2.

For each i € B, et g; = fi{¥], the restriction of £ to ¥;. Define g:([],., Vi) x
UTien Y1) = (Tien ¥ % (Tiep 200 by £ = [, £ It can be shown that
(I) Foreach y e (Jhoa Vi) x ([Lcpz), g7 ylis a countably compact subset of
liea Yy x Tliep Y =Y.
{II} g is a closed mapping.
So, the countable paracompactness of ¥ follows from Hanai’s theorem, |3, Exer-
cise 5.2.G]. This completes the proof of the claim.

Now, by Zenor’s theorem, we may conclude that ¥ is normal. This completes the proof
of Theorem 5. 3

We now tumn to the proof of Theorem 2. Let ; be an ordinal for each | € @ and let
X = [Tienei- Foreach i € o, define ¥; = (f < ay: cf(f) < twi} = §"(w1, ;) C oy, and
let ¥ =[], ¥i € X. We will use the following theorem of Arhangel’skii, see [1]:
Theorem 7 (Arhangel’skii). If P is a normal subspace of Q such that P is C*-embedded
in O, then O is normal on P.

Thus, to prove Theorem 2 it suffices to prove the following lemma:
Lemma 2. Y is C*-embedded in X.

Proof, By Taimonov's theorem [3, Theorem 3.2.1] it suffices to show that if £ and F are
any closed disjoint subsets of ¥ then E N F = . By way of contradiction fix E and F
closed subsetsof Y and x = (x,» new) € X suchthat x e ENTF. Partition w == A U B
such that ¢f(x,) > w if and only if n € B. Since x ¢ ¥ we have B # (1. We consider only
the case where B is infinite (the finite case is easier).

Enumerate B as {r;: { € w}. Let {U,: n £ w} be a local neighborhood base at x| A4 in
[1cp @n- We construct elements a™ € E and ™ € F recursively as follows. Let

WO':(vangIX( H Ofn)xUO-

néB\ing}
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Wy is an open neighborhood of x € X so we may pick ¢® € E N Wy. Let

Vo = (agﬁ,xno] x ( H zx,,) x Up.

ne B\{np}

Vp is an open neighborhood of x € X so we may pick b% € F N Wy,
Having chosen a' and &' forall i < m let

Wy = 1_[ (b::,’.s xn.o] X ( n Qn) * Uy
ne By )

I£37) [y iam

W, 1s an open neighborhood of x € X so we may pick a™ € E N W,,. Let

Vi == H(a,i,i, xn,‘] x ( n {)in) X U,

t<m ne Byfn;: i<m)

Vi 1s an open neighborhood of x € X so we may pick b € F N Wy,

For each i € w let yy, == supla,’: m > i} by construction it follows that also y,, =
sup{b,’: m > i}. I particular both sequences (a’|B: m € w) and (™| B: m € w) converge
to vl B.

For n ¢ A, let y4 = x,. This defines y € ¥. To finish the proof we wil} reach a
contradiction by showing that y € £ N'F. Fix O a basic open neighborhood of ¥. So
0 =G x H where G isopenin [],_, @, and H is open in TT,ea 0w Fix m large enough
s0 that U,, € H and such that both @™|B € G and ™| B € . Then since both amlA e U,
and »™1A € U, we have thatboth ™ € O and p" ¢ O, This completes the proof. 0

Since dense normality implies «-normality, see {1], we obtain an alternate proof of the
countable instance of Theorem 1:

Corollary 2. Any countable product of ovrdinals is k-normal.
We conclude with the following natural problems:
Problem 1. Is the product of any family of subspaces of ordinals k-normal?

Problem 2. Let X =TT, Xi. Is X «-normal assuming either
@) [liey Xi is w-normal for each T & [11%; or
(b) T1;cy Xi is k-normal for each J € (11597

The analogous problem for normal spaces has many interesting counterexamples
(see [9]). In fact, we do not know whether any of these examples are x-normal. So the
problems are open even if we assume that the subproducts are, for example, normal or
even Lindelof. We do have a positive answer to the above problems in some special cases:
Shehepin proved that the product of any family of k-metrizable spaces is k-metrizable
{hence x-normal), see [11], so no counterexample can consist of k-metrizable spaces X;.
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If X is ccc and every countable subproduct is «-normal, then X is #-normal. This is
because the closure of any open subset of X depends on only countably many coordinates

(see [31).
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